Download citation
Download citation
link to html
The title compound, [Mg(C5H4NOS)2(H2O)2]·C10H8N2O2S2, is a two-component host–guest material. The 2,2′-di­thio­bis(pyridine N-oxide) molecule has crystallographic twofold symmetry. The metal complex lies on an inversion centre and associates via C—H...S interactions into chains which thread the 2,2′-di­thio­bis­(pyridine N-oxide) lattice in perpendicular directions. Hydro­gen bonds exist between the water mol­ecules of the di­aqua­magnesium units and the N—O groups of the host lattice.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199013608/de1120sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199013608/de1120Isup2.hkl
Contains datablock I

CCDC reference: 144620

Comment top

1-Hydroxy-2(1H)-pyridinethione, pyrithione, has been widely studied as a result of its fungicidal properties (Albert et al., 1956; Chandler & Segal, 1978; Bond & Jones, 1999). Pyrithione is readily oxidized to the disulfide, i.e. 2,2'-dithiobis(pyridine N-oxide) (DTPO), which also displays fungicidal activity (Paulus, 1993). The crystal structure of DTPO consists of a three-dimensional C—H···O-bonded lattice composed of two interpenetrated homochiral networks (Bodige et al., 1997). The DTPO lattice has been shown to be suitable for guest inclusion by the formation of the host–guest complexes [TCNB][DTPO]2(H2O)4 and [PMDA][DTPO]2, where TCNB and PMDA represent 1,2,4,5-tetracyanobenzene and pyromellitic dianhydride, respectively (Bodige et al., 1997). The title compound, [Mg(C5H4NOS)2(H2O)2].C10H8N2O2S2, (I), is a host–guest material in which a diaquamagnesium complex of pyrithione is incorporated into a DTPO lattice.

The Mg atom of the [Mg(C5H4NOS)2(H2O)2] unit occupies a centre of symmetry and adopts distorted octahedral coordination via two bidentate pyrithione ligands and two water molecules (Fig. 1). The pyrithione ligands are tilted with respect to the equatorial plane defined by O1, S1, O1i and S1i [symmetry code: (i) 0.5 - x, 0.5 - y, -z], forming an angle of 27.5 (1)°. The DTPO molecule is chiral as a result of the fixed C2—S2—S2ii—C2ii torsion angle [symmetry code: (ii) -x, y, 0.5 - z]; both enantiomers are present in the crystal. The magnitude of this torsion angle, 80.3 (1)°, is considerably less than the value of 90.2 (2)° observed in DTPO itself, showing the DTPO lattice to be distorted significantly on incorporation of the [Mg(C5H4NOS)2(H2O)2] guest.

The [Mg(C5H4NOS)2(H2O)2] units in (I) are linked via C—H···S interactions [C4···S1iii 3.565 (2) Å and C4—H4···S1iii 147.6°; symmetry code: (iii) -0.5 + x, -0.5 + y, z] into chains running parallel to [110] and [110]. The C—H···O network observed in DTPO is disrupted by guest insertion and the dominant interactions in (I) are hydrogen bonds between the water molecules of the diaquamagnesium units and the N—O groups of the DTPO lattice [H100···O2iv 1.91 (2) Å and O3—H100···O2iv 174 (2)°; H101···O2v 2.02 (2) Å and O3—H101···O2v 160 (2)°; symmetry codes: (iv) 0.5 + x, 0.5 - y, -0.5 + z; (v) 0.5 - x, -0.5 + y, 0.5 - z] (Fig. 2).

The structure of (I) may be related to that of [PMDA][DTPO]2 in which PMDA molecules associate via C—H···O interactions to yield chains similar to the [Mg(C5H4NOS)2(H2O)2]n chains in (I). These thread the DTPO lattice in one direction giving rise to a solid-state polypseudorotaxane structure. The planar nature of the PMDA chains allows for face-to-face aromatic interactions between the PMDA molecules and the DTPO lattice. In (I), however, the diaquamagnesium unit introduces water molecules above and below the plane of the [Mg(C5H4NOS)2(H2O)2]n chains, facilitating additional hydrogen-bond interactions with the DTPO lattice and giving rise to the new three-dimensional architecture.

Experimental top

C5H5NOS and Mg(OAc)2 were dissolved in an EtOH/H2O mixture with stirring. The solvent was removed by evaporation and the resulting powder was recrystallized from EtOH to yield single crystals of (I).

Refinement top

The water H atoms, H100 and H101, were located in a difference Fourier map and refined with a fixed isotropic displacement parameter of 0.05 Å2 and a restrained O—H distance of 0.82 (2) Å.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1998); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1994) and CAMERON (Pearce et al., 1993); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular units in (I) showing displacement ellipsoids at 50% probability [symmetry codes: (i) -x, y, 0.5 - z; (ii) 0.5 - x, 0.5 - y, -z]. H atoms have been omitted.
[Figure 2] Fig. 2. View of (I) parallel to [110] with the DTPO lattice shaded grey. [Mg(C5H4NOS)2(H2O)2]n chains run vertically and normal to the plane of the page. O—H···O and C—H···S interactions are indicated by dotted lines.
[diaquabis(1-hydroxy-2(1H)-pyridinethiolato)magnesium(II)] [2,2'-dithiobis(pyridine-N-oxide)] top
Crystal data top
[Mg(C5H4NOS)2(H2O)2]·C10H8N2O2S2F(000) = 1168
Mr = 564.95Dx = 1.583 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 8.101 (2) ÅCell parameters from 25 reflections
b = 13.564 (3) Åθ = 12.5–15.0°
c = 21.573 (4) ŵ = 0.47 mm1
β = 91.13 (3)°T = 296 K
V = 2370.1 (8) Å3Block, colourless
Z = 40.6 × 0.3 × 0.3 mm
Data collection top
Rigaku AFC7R four-circle
diffractometer
2179 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.065
Graphite monochromatorθmax = 27.5°, θmin = 2.9°
ω–2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 017
Tmin = 0.840, Tmax = 0.867l = 2828
2910 measured reflections3 standard reflections every 200 reflections
2721 independent reflections intensity decay: none
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0371P)2 + 1.5439P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max = 0.017
S = 1.02Δρmax = 0.25 e Å3
2721 reflectionsΔρmin = 0.30 e Å3
166 parameters
Crystal data top
[Mg(C5H4NOS)2(H2O)2]·C10H8N2O2S2V = 2370.1 (8) Å3
Mr = 564.95Z = 4
Monoclinic, C2/cMo Kα radiation
a = 8.101 (2) ŵ = 0.47 mm1
b = 13.564 (3) ÅT = 296 K
c = 21.573 (4) Å0.6 × 0.3 × 0.3 mm
β = 91.13 (3)°
Data collection top
Rigaku AFC7R four-circle
diffractometer
2179 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.065
Tmin = 0.840, Tmax = 0.8673 standard reflections every 200 reflections
2910 measured reflections intensity decay: none
2721 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.25 e Å3
2721 reflectionsΔρmin = 0.30 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All H atoms on the aromatic rings were positioned geometrically with C—H distances of 0.93 Å and refined using a riding model with the Uiso values for each H atom taken as 1.2Ueq of the carrier atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.25000.25000.00000.0299 (2)
S10.23314 (6)0.24485 (4)0.11963 (2)0.03627 (14)
S20.00484 (7)0.49278 (4)0.29740 (3)0.04457 (15)
O10.03055 (17)0.18163 (11)0.01296 (6)0.0417 (4)
O20.0750 (2)0.45559 (13)0.41489 (7)0.0595 (5)
O30.3774 (2)0.11631 (12)0.00599 (8)0.0535 (4)
H1000.438 (3)0.0984 (18)0.0224 (10)0.050*
H1010.380 (3)0.0789 (16)0.0348 (9)0.050*
N10.01097 (19)0.12713 (11)0.06377 (7)0.0319 (3)
N20.1532 (2)0.39038 (14)0.38050 (8)0.0427 (4)
C10.0965 (2)0.14896 (13)0.11756 (8)0.0296 (4)
C20.0642 (3)0.08833 (16)0.16857 (10)0.0411 (5)
H20.11990.10020.20590.049*
C30.0462 (3)0.01244 (16)0.16508 (11)0.0488 (5)
H30.06550.02650.19970.059*
C40.1295 (3)0.00609 (16)0.10948 (11)0.0486 (6)
H40.20550.05730.10630.058*
C50.0981 (3)0.05200 (15)0.05976 (10)0.0422 (5)
H50.15290.03980.02220.051*
C60.1301 (2)0.39582 (15)0.31852 (9)0.0359 (4)
C70.2058 (3)0.32885 (16)0.28043 (10)0.0424 (5)
H70.18960.33210.23770.051*
C80.3057 (3)0.25690 (19)0.30630 (13)0.0554 (6)
H80.35830.21160.28110.066*
C90.3273 (3)0.2526 (2)0.36959 (14)0.0621 (7)
H90.39410.20420.38750.074*
C100.2503 (3)0.3196 (2)0.40594 (12)0.0581 (7)
H100.26470.31660.44880.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0363 (5)0.0264 (4)0.0271 (4)0.0043 (4)0.0031 (3)0.0027 (3)
S10.0434 (3)0.0366 (3)0.0288 (2)0.0137 (2)0.00074 (19)0.00224 (18)
S20.0504 (3)0.0377 (3)0.0458 (3)0.0043 (2)0.0053 (2)0.0092 (2)
O10.0452 (8)0.0500 (8)0.0295 (7)0.0170 (7)0.0057 (6)0.0108 (6)
O20.0820 (12)0.0559 (10)0.0413 (9)0.0246 (9)0.0167 (8)0.0212 (8)
O30.0789 (12)0.0392 (9)0.0433 (9)0.0184 (8)0.0220 (8)0.0140 (7)
N10.0341 (8)0.0314 (8)0.0303 (8)0.0070 (6)0.0028 (6)0.0012 (6)
N20.0458 (10)0.0493 (10)0.0330 (9)0.0173 (8)0.0016 (7)0.0086 (8)
C10.0316 (9)0.0285 (9)0.0288 (9)0.0002 (7)0.0031 (7)0.0001 (7)
C20.0448 (11)0.0449 (11)0.0336 (10)0.0058 (9)0.0009 (8)0.0075 (9)
C30.0582 (14)0.0429 (12)0.0455 (12)0.0110 (10)0.0077 (10)0.0133 (10)
C40.0584 (14)0.0353 (11)0.0527 (13)0.0199 (10)0.0126 (11)0.0025 (9)
C50.0458 (11)0.0418 (11)0.0392 (11)0.0171 (9)0.0029 (9)0.0061 (9)
C60.0343 (10)0.0401 (10)0.0334 (9)0.0071 (8)0.0009 (8)0.0055 (8)
C70.0418 (11)0.0466 (12)0.0389 (11)0.0031 (9)0.0021 (8)0.0038 (9)
C80.0411 (12)0.0572 (14)0.0680 (16)0.0075 (11)0.0050 (11)0.0049 (12)
C90.0403 (12)0.0689 (17)0.0765 (18)0.0001 (12)0.0105 (12)0.0191 (14)
C100.0572 (15)0.0729 (17)0.0437 (13)0.0210 (13)0.0164 (11)0.0122 (12)
Geometric parameters (Å, º) top
Mg1—O12.0294 (14)C1—C21.403 (3)
Mg1—O1i2.0294 (14)C2—C31.365 (3)
Mg1—O32.0895 (16)C2—H20.9300
Mg1—O3i2.0895 (16)C3—C41.388 (3)
Mg1—S1i2.5881 (7)C3—H30.9300
Mg1—S12.5881 (7)C4—C51.359 (3)
S1—C11.7080 (18)C4—H40.9300
S2—C61.764 (2)C5—H50.9300
S2—S2ii2.0480 (12)C6—C71.377 (3)
O1—N11.3341 (19)C7—C81.379 (3)
O2—N21.324 (2)C7—H70.9300
O3—H1000.827 (16)C8—C91.374 (4)
O3—H1010.801 (16)C8—H80.9300
N1—C51.351 (2)C9—C101.359 (4)
N1—C11.372 (2)C9—H90.9300
N2—C61.349 (3)C10—H100.9300
N2—C101.351 (3)
O1—Mg1—O1i180.00 (10)C2—C1—S1123.83 (15)
O1—Mg1—O391.60 (7)C3—C2—C1122.1 (2)
O1i—Mg1—O388.40 (7)C3—C2—H2119.0
O1—Mg1—O3i88.40 (7)C1—C2—H2119.0
O1i—Mg1—O3i91.60 (7)C2—C3—C4119.4 (2)
O3—Mg1—O3i180.00 (14)C2—C3—H3120.3
O1—Mg1—S1i102.32 (5)C4—C3—H3120.3
O1i—Mg1—S1i77.68 (5)C5—C4—C3118.8 (2)
O3—Mg1—S1i92.83 (5)C5—C4—H4120.6
O3i—Mg1—S1i87.17 (5)C3—C4—H4120.6
O1—Mg1—S177.68 (5)N1—C5—C4121.3 (2)
O1i—Mg1—S1102.32 (5)N1—C5—H5119.4
O3—Mg1—S187.17 (5)C4—C5—H5119.4
O3i—Mg1—S192.83 (5)N2—C6—C7120.0 (2)
S1i—Mg1—S1180.00 (3)N2—C6—S2111.73 (15)
C1—S1—Mg192.37 (6)C7—C6—S2128.21 (16)
C6—S2—S2ii102.84 (7)C6—C7—C8119.4 (2)
N1—O1—Mg1119.02 (11)C6—C7—H7120.3
Mg1—O3—H100120.5 (17)C8—C7—H7120.3
Mg1—O3—H101127.0 (18)C9—C8—C7119.6 (2)
H100—O3—H101112 (2)C9—C8—H8120.2
O1—N1—C5116.99 (16)C7—C8—H8120.2
O1—N1—C1120.60 (14)C10—C9—C8119.6 (2)
C5—N1—C1122.40 (16)C10—C9—H9120.2
O2—N2—C6117.39 (19)C8—C9—H9120.2
O2—N2—C10121.9 (2)N2—C10—C9120.7 (2)
C6—N2—C10120.7 (2)N2—C10—H10119.6
N1—C1—C2115.99 (17)C9—C10—H10119.6
N1—C1—S1120.18 (13)
O1—Mg1—S1—C122.07 (8)S1—C1—C2—C3179.87 (17)
O1i—Mg1—S1—C1157.93 (8)C1—C2—C3—C40.2 (4)
O3—Mg1—S1—C170.19 (8)C2—C3—C4—C50.2 (4)
O3i—Mg1—S1—C1109.81 (8)O1—N1—C5—C4178.4 (2)
S1i—Mg1—S1—C168 (100)C1—N1—C5—C40.3 (3)
O1i—Mg1—O1—N1170 (62)C3—C4—C5—N10.5 (4)
O3—Mg1—O1—N156.80 (14)O2—N2—C6—C7178.80 (18)
O3i—Mg1—O1—N1123.20 (14)C10—N2—C6—C70.0 (3)
S1i—Mg1—O1—N1150.04 (12)O2—N2—C6—S20.0 (2)
S1—Mg1—O1—N129.96 (12)C10—N2—C6—S2178.76 (16)
Mg1—O1—N1—C5152.28 (14)S2ii—S2—C6—N2173.81 (13)
Mg1—O1—N1—C129.0 (2)S2ii—S2—C6—C77.5 (2)
O1—N1—C1—C2178.71 (17)N2—C6—C7—C80.3 (3)
C5—N1—C1—C20.1 (3)S2—C6—C7—C8178.94 (17)
O1—N1—C1—S11.5 (2)C6—C7—C8—C90.5 (4)
C5—N1—C1—S1179.89 (15)C7—C8—C9—C100.3 (4)
Mg1—S1—C1—N117.75 (15)O2—N2—C10—C9179.0 (2)
Mg1—S1—C1—C2162.04 (17)C6—N2—C10—C90.3 (3)
N1—C1—C2—C30.3 (3)C8—C9—C10—N20.1 (4)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···S1iii0.932.743.565 (2)148
O3—H100···O2iv0.83 (2)1.91 (2)2.739 (2)174 (2)
O3—H101···O2v0.80 (2)2.02 (2)2.791 (2)160 (2)
Symmetry codes: (iii) x1/2, y1/2, z; (iv) x+1/2, y+1/2, z1/2; (v) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mg(C5H4NOS)2(H2O)2]·C10H8N2O2S2
Mr564.95
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)8.101 (2), 13.564 (3), 21.573 (4)
β (°) 91.13 (3)
V3)2370.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.6 × 0.3 × 0.3
Data collection
DiffractometerRigaku AFC7R four-circle
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.840, 0.867
No. of measured, independent and
observed [I > 2σ(I)] reflections
2910, 2721, 2179
Rint0.065
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.02
No. of reflections2721
No. of parameters166
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.30

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1998), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1995), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997b), XP in SHELXTL/PC (Sheldrick, 1994) and CAMERON (Pearce et al., 1993), SHELXL97.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds