Download citation
Download citation
link to html
In order to extend the experimental data already available on the close packing of cyclopentanes substituted with vicinal COX (X = OH, NH2) and OH groups to the analogous cyclohexanes, cycloheptanes and cyclooctanes, (1R*,2S*)-cis-2-hydroxy-1-cyclooctanecarboxylic acid (8C), (1R*,2R*)-trans-2-hydroxy-1-cyclooctanecarboxylic acid (8T) and (1R*,2R*)-trans-2-hydroxy-1-cyclooctanecarboxamide (8T*) were subjected to X-ray crystal structure analysis. In 8T and 8T*, the hydrogen bonds form infinite ribbons of dimers joined by R ^{2}_{2}(12) rings with Ci symmetry. Two types of dimer alternate along each ribbon. The dimers differ in the donor and acceptor roles of the functional groups. This pattern was previously deduced topologically among the possible forms of association for heterochiral dimers [Kálmán et al. (2002). Acta Cryst. B58, 494-501]. As they have the same pattern of hydrogen bonds, 8T and 8T* are isostructural. The additional donor (i.e. the second hydrogen of the NH2 group) present in 8T* links the adjacent ribbons so as to form smaller R^{2} _{2}(8) rings between them. The crystals of the cis stereoisomer 8C are built up from antiparallel hydrogen-bonded helices. The topology and symmetry of this structure are the same as for the close packing of (1R*,2R*,4S*)-4-tert-butyl-2-hydroxy-1-cyclopentanecarboxamide [Kálmán et al. (2001). Acta Cryst. B57, 539-550]; only the hydrogen-bond donors and acceptors are interchanged, in the same way as in the two dimer types of 8T and 8T* ribbons. This analogy suggests that helices may originate as homochiral dimers with C2 symmetry and polymerize into helices during crystal formation. The conformational characteristics of the heterochiral dimers observed in the title compounds and in closely related structures are discussed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768102009631/de0017sup1.cif
Contains datablocks 8T, 8Tstar, 8C

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768102009631/de00178Tsup2.hkl
Contains datablock 8T

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768102009631/de00178Tstarsup3.hkl
Contains datablock 8Tstar

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768102009631/de00178Csup4.hkl
Contains datablock 8C

CCDC references: 195806; 195807; 195808

Computing details top

For all compounds, data collection: CAD-4 EXPRESS; cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
(8T) (1R*,2R*)-trans-2-hydroxy-1-cyclooctanecarboxylic acid top
Crystal data top
C9H16O3Z = 2
Mr = 172.22F(000) = 188
Triclinic, P1Dx = 1.268 Mg m3
a = 6.035 (1) ÅMo Kα radiation, λ = 0.710730 Å
b = 8.390 (1) ÅCell parameters from 25 reflections
c = 9.389 (2) Åθ = 17.0–18.9°
α = 84.29 (1)°µ = 0.09 mm1
β = 76.37 (1)°T = 293 K
γ = 77.95 (1)°Prism, colourless
V = 451.20 (13) Å30.60 × 0.40 × 0.30 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
2585 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 35.0°, θmin = 2.5°
ω–2θ scansh = 99
Absorption correction: ψ scan
?
k = 1313
Tmin = 0.935, Tmax = 0.980l = 1515
8683 measured reflections3 standard reflections every 60 min
3931 independent reflections intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142Riding
S = 0.95 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3931 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.33 e Å3
101 restraintsΔρmin = 0.20 e Å3
Crystal data top
C9H16O3γ = 77.95 (1)°
Mr = 172.22V = 451.20 (13) Å3
Triclinic, P1Z = 2
a = 6.035 (1) ÅMo Kα radiation
b = 8.390 (1) ŵ = 0.09 mm1
c = 9.389 (2) ÅT = 293 K
α = 84.29 (1)°0.60 × 0.40 × 0.30 mm
β = 76.37 (1)°
Data collection top
Enraf-Nonius CAD4
diffractometer
2585 reflections with I > 2σ(I)
Absorption correction: ψ scan
?
Rint = 0.021
Tmin = 0.935, Tmax = 0.9803 standard reflections every 60 min
8683 measured reflections intensity decay: 3%
3931 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044101 restraints
wR(F2) = 0.142Riding
S = 0.95Δρmax = 0.33 e Å3
3931 reflectionsΔρmin = 0.20 e Å3
111 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.24663 (10)0.42030 (7)0.17893 (7)0.03759 (15)
H10.38880.39490.16060.049*
O20.27899 (11)0.66197 (10)0.12937 (7)0.05039 (19)
O30.07127 (10)0.68921 (8)0.01809 (6)0.04129 (16)
H30.10440.65740.05260.054*
C10.23780 (13)0.71043 (9)0.12595 (8)0.03272 (15)
H1A0.40720.69900.09950.043*
C20.17562 (13)0.57618 (9)0.24366 (8)0.03178 (15)
H20.00590.59610.27560.041*
C30.27376 (17)0.56596 (10)0.38111 (9)0.04166 (19)
H3A0.44070.55770.35040.054*
H3B0.24590.46590.43740.054*
C40.1765 (2)0.70824 (12)0.48309 (9)0.0492 (2)
H4A0.02780.76350.46350.064*
H4B0.14800.66360.58360.064*
C50.3300 (2)0.83474 (13)0.47017 (11)0.0539 (3)
H5A0.23440.93210.51590.070*
H5B0.44690.79240.52670.070*
C60.45338 (19)0.88506 (16)0.31697 (13)0.0588 (3)
H6A0.54490.78750.26960.076*
H6B0.56060.95290.32620.076*
C70.2998 (3)0.97648 (14)0.21741 (12)0.0593 (3)
H7A0.39941.01050.12740.077*
H7B0.21021.07470.26450.077*
C80.1307 (2)0.88565 (10)0.17615 (10)0.0456 (2)
H8A0.06670.94870.09780.059*
H8B0.00300.87990.26030.059*
C90.15477 (13)0.68416 (9)0.00872 (8)0.03344 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0362 (3)0.0354 (3)0.0461 (3)0.0020 (2)0.0179 (2)0.0150 (2)
O20.0391 (3)0.0799 (5)0.0333 (3)0.0071 (3)0.0095 (2)0.0140 (3)
O30.0323 (3)0.0551 (4)0.0409 (3)0.0039 (2)0.0146 (2)0.0172 (3)
C10.0320 (3)0.0380 (3)0.0320 (3)0.0069 (3)0.0114 (3)0.0094 (2)
C20.0305 (3)0.0339 (3)0.0335 (3)0.0029 (2)0.0115 (2)0.0102 (2)
C30.0531 (5)0.0400 (4)0.0366 (4)0.0029 (3)0.0217 (3)0.0086 (3)
C40.0655 (6)0.0506 (5)0.0332 (4)0.0059 (4)0.0144 (4)0.0135 (3)
C50.0657 (6)0.0526 (5)0.0529 (5)0.0023 (4)0.0312 (5)0.0231 (4)
C60.0445 (5)0.0724 (6)0.0692 (6)0.0208 (5)0.0102 (4)0.0356 (5)
C70.0882 (8)0.0534 (5)0.0463 (5)0.0365 (6)0.0110 (5)0.0111 (4)
C80.0629 (6)0.0344 (4)0.0454 (4)0.0056 (4)0.0243 (4)0.0079 (3)
C90.0329 (3)0.0358 (3)0.0342 (3)0.0029 (3)0.0129 (3)0.0084 (3)
Geometric parameters (Å, º) top
O1—C21.4369 (8)C4—C51.5269 (15)
O1—H10.8200C4—H4A0.9700
O2—C91.2096 (10)C4—H4B0.9700
O3—C91.3199 (10)C5—C61.5190 (17)
O3—H30.8200C5—H5A0.9700
C1—C91.5161 (10)C5—H5B0.9700
C1—C21.5376 (12)C6—C71.513 (2)
C1—C81.5488 (12)C6—H6A0.9700
C1—H1A0.9800C6—H6B0.9700
C2—C31.5299 (10)C7—C81.5306 (15)
C2—H20.9800C7—H7A0.9700
C3—C41.5351 (11)C7—H7B0.9700
C3—H3A0.9700C8—H8A0.9700
C3—H3B0.9700C8—H8B0.9700
C2—O1—H1109.5C6—C5—H5A108.0
C9—O3—H3109.5C4—C5—H5A108.0
C9—C1—C2108.18 (6)C6—C5—H5B108.0
C9—C1—C8109.36 (6)C4—C5—H5B108.0
C2—C1—C8113.69 (7)H5A—C5—H5B107.2
C9—C1—H1A108.5C5—C6—C7116.26 (9)
C2—C1—H1A108.5C5—C6—H6A108.2
C8—C1—H1A108.5C7—C6—H6A108.2
O1—C2—C1109.35 (6)C5—C6—H6B108.2
O1—C2—C3108.70 (6)C7—C6—H6B108.2
C1—C2—C3116.62 (7)H6A—C6—H6B107.4
O1—C2—H2107.3C6—C7—C8117.19 (9)
C1—C2—H2107.3C6—C7—H7A108.0
C3—C2—H2107.3C8—C7—H7A108.0
C2—C3—C4116.39 (7)C6—C7—H7B108.0
C2—C3—H3A108.2C8—C7—H7B108.0
C4—C3—H3A108.2H7A—C7—H7B107.2
C2—C3—H3B108.2C7—C8—C1114.96 (9)
C4—C3—H3B108.2C7—C8—H8A108.5
H3A—C3—H3B107.3C1—C8—H8A108.5
C5—C4—C3115.80 (9)C7—C8—H8B108.5
C5—C4—H4A108.3C1—C8—H8B108.5
C3—C4—H4A108.3H8A—C8—H8B107.5
C5—C4—H4B108.3O2—C9—O3122.46 (7)
C3—C4—H4B108.3O2—C9—C1124.59 (7)
H4A—C4—H4B107.4O3—C9—C1112.94 (6)
C6—C5—C4117.39 (7)
C9—C1—C2—O148.02 (8)C5—C6—C7—C863.33 (13)
C8—C1—C2—O1169.70 (6)C6—C7—C8—C147.01 (13)
C9—C1—C2—C3171.82 (6)C9—C1—C8—C7135.91 (8)
C8—C1—C2—C366.51 (9)C2—C1—C8—C7103.08 (9)
O1—C2—C3—C4167.79 (8)C2—C1—C9—O2121.22 (9)
C1—C2—C3—C468.09 (10)C8—C1—C9—O2114.48 (10)
C2—C3—C4—C5101.20 (10)C2—C1—C9—O359.34 (8)
C3—C4—C5—C640.99 (13)C8—C1—C9—O364.96 (9)
C4—C5—C6—C766.15 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.922.7386 (10)177
O3—H3···O1ii0.821.852.6557 (8)166
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
(8Tstar) (1R*,2R*)-trans-2-hydroxy-1-cyclooctanecarboxamide ? top
Crystal data top
C9H17NO2Z = 2
Mr = 171.24F(000) = 188
Triclinic, P1Dx = 1.144 Mg m3
a = 6.760 (1) ÅMo Kα radiation, λ = 0.710730 Å
b = 7.314 (1) ÅCell parameters from 25 reflections
c = 11.217 (1) Åθ = 12.0–14.4°
α = 79.22 (1)°µ = 0.08 mm1
β = 74.12 (1)°T = 293 K
γ = 69.45 (1)°Prism, colourless
V = 496.93 (11) Å30.30 × 0.25 × 0.02 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
989 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 26.0°, θmin = 3.0°
ω–2θ scansh = 88
Absorption correction: ψ scan
?
k = 99
Tmin = 0.893, Tmax = 0.995l = 1313
4315 measured reflections3 standard reflections every 60 min
1941 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146Riding
S = 0.84 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
1941 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.16 e Å3
146 restraintsΔρmin = 0.14 e Å3
Crystal data top
C9H17NO2γ = 69.45 (1)°
Mr = 171.24V = 496.93 (11) Å3
Triclinic, P1Z = 2
a = 6.760 (1) ÅMo Kα radiation
b = 7.314 (1) ŵ = 0.08 mm1
c = 11.217 (1) ÅT = 293 K
α = 79.22 (1)°0.30 × 0.25 × 0.02 mm
β = 74.12 (1)°
Data collection top
Enraf-Nonius CAD4
diffractometer
989 reflections with I > 2σ(I)
Absorption correction: ψ scan
?
Rint = 0.026
Tmin = 0.893, Tmax = 0.9953 standard reflections every 60 min
4315 measured reflections intensity decay: 2%
1941 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043146 restraints
wR(F2) = 0.146Riding
S = 0.84Δρmax = 0.16 e Å3
1941 reflectionsΔρmin = 0.14 e Å3
110 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7699 (2)0.3358 (2)0.52719 (13)0.0553 (4)
H10.69630.30680.49110.072*
O20.4304 (2)0.79742 (19)0.60322 (14)0.0552 (4)
N10.7632 (3)0.8183 (2)0.52684 (17)0.0550 (5)
H1B0.71520.92640.48250.071*
H1C0.89970.76860.52450.071*
C10.7208 (3)0.5425 (3)0.67721 (19)0.0455 (5)
H1A0.87940.50320.65190.059*
C20.6472 (3)0.3823 (3)0.65028 (19)0.0497 (5)
H20.49460.44190.64590.065*
C30.6631 (4)0.2002 (3)0.7427 (2)0.0630 (6)
H3A0.57800.24220.82350.082*
H3B0.59410.12150.71830.082*
C40.8849 (4)0.0676 (3)0.7595 (3)0.0708 (7)
H4A0.96770.01900.68000.092*
H4B0.86600.04470.81720.092*
C51.0213 (4)0.1550 (4)0.8062 (3)0.0758 (8)
H5A1.14390.04890.82860.099*
H5B1.07840.23940.73830.099*
C60.9013 (5)0.2732 (4)0.9180 (3)0.0872 (9)
H6A0.99570.23980.97560.113*
H6B0.77540.23270.96040.113*
C70.8258 (5)0.4964 (4)0.8882 (2)0.0793 (8)
H7A0.77420.55440.96650.103*
H7B0.95180.53470.84250.103*
C80.6510 (4)0.5874 (3)0.8147 (2)0.0638 (6)
H8A0.60210.72860.81660.083*
H8B0.52850.54150.85590.083*
C90.6286 (3)0.7294 (3)0.59782 (18)0.0436 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0512 (8)0.0545 (10)0.0644 (10)0.0112 (7)0.0224 (7)0.0130 (7)
O20.0439 (8)0.0441 (8)0.0742 (10)0.0057 (6)0.0221 (7)0.0010 (7)
N10.0496 (10)0.0415 (10)0.0670 (12)0.0095 (8)0.0187 (9)0.0093 (9)
C10.0469 (11)0.0388 (11)0.0511 (12)0.0100 (9)0.0177 (9)0.0023 (9)
C20.0432 (10)0.0438 (11)0.0594 (13)0.0078 (9)0.0167 (10)0.0033 (10)
C30.0656 (14)0.0465 (13)0.0777 (16)0.0201 (11)0.0193 (12)0.0007 (11)
C40.0827 (16)0.0475 (13)0.0781 (17)0.0155 (12)0.0291 (14)0.0095 (12)
C50.0811 (17)0.0616 (16)0.0823 (18)0.0118 (13)0.0406 (15)0.0099 (14)
C60.117 (2)0.0747 (19)0.0737 (18)0.0218 (17)0.0511 (16)0.0096 (15)
C70.112 (2)0.0728 (18)0.0606 (16)0.0252 (16)0.0388 (15)0.0034 (13)
C80.0838 (16)0.0481 (13)0.0564 (15)0.0152 (12)0.0179 (12)0.0059 (11)
C90.0489 (11)0.0357 (10)0.0473 (12)0.0070 (9)0.0183 (9)0.0081 (9)
Geometric parameters (Å, º) top
O1—C21.436 (2)C4—C51.529 (4)
O1—H10.8200C4—H4A0.9700
O2—C91.243 (2)C4—H4B0.9700
N1—C91.307 (3)C5—C61.527 (4)
N1—H1B0.8600C5—H5A0.9700
N1—H1C0.8600C5—H5B0.9700
C1—C91.517 (3)C6—C71.530 (4)
C1—C21.528 (3)C6—H6A0.9700
C1—C81.546 (3)C6—H6B0.9700
C1—H1A0.9800C7—C81.515 (3)
C2—C31.518 (3)C7—H7A0.9700
C2—H20.9800C7—H7B0.9700
C3—C41.513 (3)C8—H8A0.9700
C3—H3A0.9700C8—H8B0.9700
C3—H3B0.9700
C2—O1—H1109.5C6—C5—C4115.2 (2)
C9—N1—H1B120.0C6—C5—H5A108.5
C9—N1—H1C120.0C4—C5—H5A108.5
H1B—N1—H1C120.0C6—C5—H5B108.5
C9—C1—C2107.95 (16)C4—C5—H5B108.5
C9—C1—C8108.31 (16)H5A—C5—H5B107.5
C2—C1—C8115.21 (18)C5—C6—C7115.7 (2)
C9—C1—H1A108.4C5—C6—H6A108.4
C2—C1—H1A108.4C7—C6—H6A108.4
C8—C1—H1A108.4C5—C6—H6B108.4
O1—C2—C3112.02 (18)C7—C6—H6B108.4
O1—C2—C1104.85 (16)H6A—C6—H6B107.4
C3—C2—C1117.76 (18)C8—C7—C6118.3 (2)
O1—C2—H2107.2C8—C7—H7A107.7
C3—C2—H2107.2C6—C7—H7A107.7
C1—C2—H2107.2C8—C7—H7B107.7
C4—C3—C2118.8 (2)C6—C7—H7B107.7
C4—C3—H3A107.6H7A—C7—H7B107.1
C2—C3—H3A107.6C7—C8—C1115.1 (2)
C4—C3—H3B107.6C7—C8—H8A108.5
C2—C3—H3B107.6C1—C8—H8A108.5
H3A—C3—H3B107.1C7—C8—H8B108.5
C3—C4—C5117.7 (2)C1—C8—H8B108.5
C3—C4—H4A107.9H8A—C8—H8B107.5
C5—C4—H4A107.9O2—C9—N1121.56 (17)
C3—C4—H4B107.9O2—C9—C1120.54 (18)
C5—C4—H4B107.9N1—C9—C1117.87 (16)
H4A—C4—H4B107.2
C9—C1—C2—O171.69 (18)C5—C6—C7—C866.8 (4)
C8—C1—C2—O1167.14 (16)C6—C7—C8—C168.7 (3)
C9—C1—C2—C3163.01 (18)C9—C1—C8—C7138.0 (2)
C8—C1—C2—C341.8 (3)C2—C1—C8—C7101.0 (2)
O1—C2—C3—C457.1 (3)C2—C1—C9—O255.2 (2)
C1—C2—C3—C464.6 (3)C8—C1—C9—O270.2 (2)
C2—C3—C4—C561.3 (3)C2—C1—C9—N1126.63 (19)
C3—C4—C5—C646.7 (3)C8—C1—C9—N1108.0 (2)
C4—C5—C6—C7100.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.922.732 (2)170
N1—H1B···O2ii0.862.092.945 (2)172
N1—H1C···O1iii0.862.042.883 (2)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x+2, y+1, z+1.
(8C) (1R*,2S*)-cis-2-hydroxy-1-cyclooctanecarboxylic acid top
Crystal data top
C9H16O3F(000) = 376
Mr = 172.22Dx = 1.215 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.710730 Å
a = 11.082 (1) ÅCell parameters from 25 reflections
b = 7.618 (1) Åθ = 16.2–17.8°
c = 11.579 (1) ŵ = 0.09 mm1
β = 105.67 (1)°T = 293 K
V = 941.20 (17) Å3Prism, colourless
Z = 40.50 × 0.40 × 0.25 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
2100 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 35.0°, θmin = 3.2°
ω–2θ scansh = 1717
Absorption correction: ψ scan
?
k = 120
Tmin = 0.958, Tmax = 0.988l = 018
4372 measured reflections3 standard reflections every 60 min
4074 independent reflections intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154Riding
S = 0.85 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
4074 reflections(Δ/σ)max < 0.001
111 parametersΔρmax = 0.31 e Å3
99 restraintsΔρmin = 0.17 e Å3
Crystal data top
C9H16O3V = 941.20 (17) Å3
Mr = 172.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.082 (1) ŵ = 0.09 mm1
b = 7.618 (1) ÅT = 293 K
c = 11.579 (1) Å0.50 × 0.40 × 0.25 mm
β = 105.67 (1)°
Data collection top
Enraf-Nonius CAD4
diffractometer
2100 reflections with I > 2σ(I)
Absorption correction: ψ scan
?
Rint = 0.016
Tmin = 0.958, Tmax = 0.9883 standard reflections every 60 min
4372 measured reflections intensity decay: 3%
4074 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05099 restraints
wR(F2) = 0.154Riding
S = 0.85Δρmax = 0.31 e Å3
4074 reflectionsΔρmin = 0.17 e Å3
111 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.00245 (6)0.22080 (10)0.11454 (7)0.03749 (19)
H10.01070.19850.04290.049*
O20.07036 (8)0.17111 (10)0.13317 (7)0.0418 (2)
O30.14942 (8)0.06238 (11)0.31595 (7)0.0475 (2)
H30.10480.13820.33330.062*
C10.20784 (9)0.08228 (13)0.15978 (8)0.03058 (19)
H1A0.28920.09200.21950.040*
C20.13409 (10)0.25314 (13)0.16540 (9)0.0339 (2)
H20.14650.28250.25020.044*
C30.17177 (13)0.41215 (15)0.10455 (13)0.0490 (3)
H3A0.11160.50470.10420.064*
H3B0.16430.38160.02160.064*
C40.30256 (15)0.4869 (2)0.15783 (16)0.0659 (4)
H4A0.30750.59810.11860.086*
H4B0.31110.51210.24180.086*
C50.41537 (15)0.3764 (3)0.15052 (16)0.0709 (4)
H5A0.43140.29060.21480.092*
H5B0.48800.45280.16530.092*
C60.40454 (14)0.2802 (2)0.03419 (15)0.0679 (4)
H6A0.34480.34250.02930.088*
H6B0.48510.28570.01650.088*
C70.36447 (12)0.0883 (2)0.03002 (13)0.0558 (3)
H7A0.42350.02790.09510.073*
H7B0.37390.03870.04420.073*
C80.23276 (10)0.04339 (15)0.03808 (10)0.0389 (2)
H8A0.21780.08050.02050.051*
H8B0.17280.10870.02340.051*
C90.13589 (9)0.06453 (13)0.19924 (9)0.0317 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0377 (4)0.0430 (4)0.0329 (4)0.0057 (3)0.0116 (3)0.0072 (3)
O20.0545 (5)0.0348 (4)0.0360 (4)0.0087 (3)0.0123 (3)0.0054 (3)
O30.0591 (5)0.0547 (5)0.0298 (4)0.0231 (4)0.0142 (3)0.0013 (3)
C10.0319 (4)0.0335 (4)0.0272 (4)0.0001 (4)0.0094 (3)0.0011 (3)
C20.0404 (5)0.0325 (5)0.0282 (4)0.0006 (4)0.0084 (4)0.0035 (4)
C30.0580 (7)0.0342 (5)0.0534 (7)0.0001 (5)0.0123 (6)0.0077 (5)
C40.0755 (10)0.0462 (7)0.0744 (10)0.0216 (7)0.0175 (8)0.0033 (7)
C50.0572 (8)0.0814 (10)0.0695 (10)0.0275 (8)0.0091 (7)0.0028 (8)
C60.0537 (8)0.0890 (11)0.0685 (9)0.0161 (8)0.0292 (7)0.0076 (8)
C70.0439 (6)0.0772 (9)0.0537 (7)0.0001 (6)0.0258 (6)0.0004 (7)
C80.0401 (5)0.0469 (6)0.0341 (5)0.0010 (4)0.0177 (4)0.0025 (4)
C90.0353 (4)0.0314 (4)0.0291 (4)0.0016 (4)0.0100 (3)0.0007 (3)
Geometric parameters (Å, º) top
O1—C21.4393 (12)C4—C51.528 (3)
O1—H10.8200C4—H4A0.9700
O2—C91.2131 (12)C4—H4B0.9700
O3—C91.3189 (12)C5—C61.509 (2)
O3—H30.8200C5—H5A0.9700
C1—C91.5140 (14)C5—H5B0.9700
C1—C81.5363 (13)C6—C71.525 (2)
C1—C21.5476 (14)C6—H6A0.9700
C1—H1A0.9800C6—H6B0.9700
C2—C31.5157 (16)C7—C81.5263 (16)
C2—H20.9800C7—H7A0.9700
C3—C41.5239 (19)C7—H7B0.9700
C3—H3A0.9700C8—H8A0.9700
C3—H3B0.9700C8—H8B0.9700
C2—O1—H1109.5C4—C5—H5A108.1
C9—O3—H3109.5C6—C5—H5A108.1
C9—C1—C8111.98 (8)C4—C5—H5B108.1
C9—C1—C2106.34 (8)C6—C5—H5B108.1
C8—C1—C2115.38 (8)H5A—C5—H5B107.3
C9—C1—H1A107.6C7—C6—C5116.50 (13)
C8—C1—H1A107.6C7—C6—H6A108.2
C2—C1—H1A107.6C5—C6—H6A108.2
O1—C2—C3108.82 (9)C7—C6—H6B108.2
O1—C2—C1109.10 (8)C5—C6—H6B108.2
C3—C2—C1115.96 (9)H6A—C6—H6B107.3
O1—C2—H2107.5C6—C7—C8119.21 (12)
C3—C2—H2107.5C6—C7—H7A107.5
C1—C2—H2107.5C8—C7—H7A107.5
C2—C3—C4117.49 (11)C6—C7—H7B107.5
C2—C3—H3A107.9C8—C7—H7B107.5
C4—C3—H3A107.9H7A—C7—H7B107.0
C2—C3—H3B107.9C7—C8—C1115.13 (10)
C4—C3—H3B107.9C7—C8—H8A108.5
H3A—C3—H3B107.2C1—C8—H8A108.5
C5—C4—C3118.33 (13)C7—C8—H8B108.5
C5—C4—H4A107.7C1—C8—H8B108.5
C3—C4—H4A107.7H8A—C8—H8B107.5
C5—C4—H4B107.7O2—C9—O3122.51 (9)
C3—C4—H4B107.7O2—C9—C1125.34 (9)
H4A—C4—H4B107.1O3—C9—C1112.13 (8)
C4—C5—C6116.60 (14)
C9—C1—C2—O143.91 (11)C5—C6—C7—C866.10 (19)
C8—C1—C2—O180.90 (11)C6—C7—C8—C167.83 (17)
C9—C1—C2—C3167.16 (9)C9—C1—C8—C7137.14 (11)
C8—C1—C2—C342.36 (13)C2—C1—C8—C7101.04 (12)
O1—C2—C3—C4170.74 (11)C8—C1—C9—O222.54 (14)
C1—C2—C3—C465.86 (14)C2—C1—C9—O2104.33 (11)
C2—C3—C4—C567.30 (18)C8—C1—C9—O3159.09 (9)
C3—C4—C5—C641.1 (2)C2—C1—C9—O374.04 (10)
C4—C5—C6—C796.78 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.982.7876 (11)170
O3—H3···O1ii0.821.822.6344 (11)171
Symmetry codes: (i) x, y, z; (ii) x, y1/2, z+1/2.

Experimental details

(8T)(8Tstar)(8C)
Crystal data
Chemical formulaC9H16O3C9H17NO2C9H16O3
Mr172.22171.24172.22
Crystal system, space groupTriclinic, P1Triclinic, P1Monoclinic, P21/c
Temperature (K)293293293
a, b, c (Å)6.035 (1), 8.390 (1), 9.389 (2)6.760 (1), 7.314 (1), 11.217 (1)11.082 (1), 7.618 (1), 11.579 (1)
α, β, γ (°)84.29 (1), 76.37 (1), 77.95 (1)79.22 (1), 74.12 (1), 69.45 (1)90, 105.67 (1), 90
V3)451.20 (13)496.93 (11)941.20 (17)
Z224
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.090.080.09
Crystal size (mm)0.60 × 0.40 × 0.300.30 × 0.25 × 0.020.50 × 0.40 × 0.25
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Enraf-Nonius CAD4
diffractometer
Enraf-Nonius CAD4
diffractometer
Absorption correctionψ scanψ scanψ scan
Tmin, Tmax0.935, 0.9800.893, 0.9950.958, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
8683, 3931, 2585 4315, 1941, 989 4372, 4074, 2100
Rint0.0210.0260.016
(sin θ/λ)max1)0.8060.6170.806
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.142, 0.95 0.043, 0.146, 0.84 0.050, 0.154, 0.85
No. of reflections393119414074
No. of parameters111110111
No. of restraints10114699
H-atom treatmentRidingRidingRiding
Δρmax, Δρmin (e Å3)0.33, 0.200.16, 0.140.31, 0.17

Computer programs: CAD-4 EXPRESS, XCAD4 (Harms 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) for (8T) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.922.7386 (10)176.6
O3—H3···O1ii0.821.852.6557 (8)165.7
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) for (8Tstar) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.922.732 (2)170.0
N1—H1B···O2ii0.862.092.945 (2)172.3
N1—H1C···O1iii0.862.042.883 (2)165.9
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (8C) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.982.7876 (11)169.5
O3—H3···O1ii0.821.822.6344 (11)170.9
Symmetry codes: (i) x, y, z; (ii) x, y1/2, z+1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds