Download citation
Download citation
link to html
The title compound, [Cu2(C6H19N4)2Cl2](C10H6O6S2)2·5H2O, is comprised of discrete [Cu2(tren)2Cl2]2+ dimers {tren is 2-[N,N-bis(2-amino­ethyl)­amino]­ethyl­aminium} and naphthalene-1,5-di­sulfonate anions. Two Cl anions bridge two CuII ions, each of which is also coordinated by two of the primary and the tertiary amino N atoms of the tren ligand, giving each metal atom a distorted square-pyramidal coordination geometry. The cation lies about an inversion centre and the asymmetric unit also has two independent anions lying about inversion centres.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010101561X/da1201sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010101561X/da1201Isup2.hkl
Contains datablock I

CCDC reference: 180147

Comment top

Copper(II) complexes with the formula [Cu2(tren)2X2](BPh4)2, where X is CN-, NCO-, NCS- or Cl-, have been studied from both structural and magnetic points of view (Duggan & Hendrickson, 1974a,b; Duggan et al., 1974; Laskowski et al., 1975). Each CuII ion in these compounds is five-coordinate in a trigonal-bipyramidal geometry, with tren as a tetradentate ligand and the X- anion in the axial position. These [Cu2(tren)2X2]2+ ions dimerize via a hydrogen bond between the X group and a primary amine of tren coordinated to the second CuII ion. Herein, we report a novel dimeric CuII cation with the same basic formula as the above but with a different structure, [Cu2(tren)2Cl2](1,5-nds)2·5H2O, (I) (1,5-nds is naphthalene-1,5-disulfonate). \sch

Crystals of (I) are comprised of discrete [Cu2(tren)2Cl2]2+ cations, 1,5-nds anions and water molecules, as shown in Fig. 1. Two Cl- anions bridge two CuII ions, each of which is also coordinated by two of the primary and the tertiary amino N atoms of the tren ligands, leaving two free ethylamine arms. A search of the Cambridge Structural Database (Release?; Allen & Kennard, 1993) indicates no previous observation of this kind of coordination mode of tren with CuII.

The coordination geometry of CuII can be described as a distorted square pyramid, as ascertained by Reedijk's τ factor (Addison et al., 1984) of 0.313 for Cu1 and 0.331 for Cu1A (τ = 0 for a square pyramid and 1 for a trigonal bipyramid). Atoms N1, N2 and N3 of the tren ligand and atom Cl1 are nearly coplanar, constituting the base of one pyramid, while Cl1A occupies the apical position. As a result, the geometry of the complex consists of two square pyramids sharing one common base-to-apex edge, with the two bases nearly parallel to each other (dihedral angle of 1.6°).

The reported geometry of CuII dimers with the general formula [N3Cu(µ-Cl)2CuN3] has been classified into three types (Rodríguez & Llobet, 1999). The arrangement in (I) belongs to type II. The Cu—N distances are 1.975 (3), 1.983 (2) and 2.081 (2) Å. Obviously, the Cu—N bonds in which N is cis to the basal Cl are slightly shorter than that in which N is trans to the basal Cl. This phenomenon is different from that in [Cu2(dien)2Cl2](ClO4)2 (dien is diethylenetriamine?; Hoffmann et al., 1984), with the same geometry and N3Cl2 coordination environment, but similar to that in [Cu2(dpt)2Cl2]Cl2 (dpt is ?; Rodríguez & Llobet, 1999).

With regard to the [Cu(µ-Cl)2Cu] core, the dimeric unit has unsymmetrical Cu—Cl bridging distances of 2.2819 (7) and 2.6320 (7) Å. The bridging Cu—Cl—Cu angle is 91.46 (3)° and Cl—Cu—Cl is 88.54 (3)°. All of the bond distances and angles are close to those found in [Cu2(dien)2Cl2](ClO4)2 (Hoffmann et al., 1984). The Cu···Cu separation is 3.5269 (8) Å, which is slightly shorter than the values reported in analogous compounds (Hoffmann et al., 1984; Rodrí guez & Llobet, 1999).

The coordination mode of tren, the mode of dimerization and the coordination geometry in (I) are quite different from those in [Cu2(tren)2Cl2](BPh4)2, (II) (Laskowski et al., 1975), although the two compounds have the same cation formula, [Cu2(tren)2Cl2]2+. In (II), each CuII centre is coordinated by a Cl- ligand and all four amino N atoms of tren, and the CuII centres are dimerized by two complementary hydrogen bonds between Cl- and a primary amine of tren. Moreover, the local copper environment in (II) is a distorted trigonal bipyramid (N4Cl), while in (I) it is a distorted square pyramid (N3Cl2).

Experimental top

Disodium naphthalene-1,5-disulfonate (0.17 g, 0.5 mmol) was added to an aqueous solution of cupric chloride (0.09 g, 0.5 mmol). The solution was then treated with tris(2-aminoethyl)amine (0.076 g, 0.5 mmol). The resulting solution was allowed to stand at room temperature. After 10 d, blue block crystals of (I) were collected in 10% yield.

Refinement top

All H atoms of the tren ligands and on the 1,5-nds anions were placed in idealized positions (N—H = 0.90 and 0.89 Å for NH2 and NH3, respectively, and C—H = 0.97 and 0.93 Å for CH2 and CH, respectively) and refined as riding atoms. The H atoms of water molecules O1W and O2W were located from the difference Fourier map and not refined and those of the O3W water molecule were not located.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii and only the unique portions are labelled. Only three of the five water molecules are shown.
Di-µ-chloro-bis({2-[N,N-bis(2-aminoethyl)amino-κ3N]ethylaminium}copper(II)) bis(naphthalene-1,5-disulfonate) pentahydrate top
Crystal data top
[Cu2(C6H19N4)2Cl2]·2C10H6O6S2·5H2OZ = 1
Mr = 1155.10F(000) = 600
Triclinic, P1Dx = 1.616 Mg m3
a = 9.9348 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.5498 (17) ÅCell parameters from 843 reflections
c = 11.9637 (17) Åθ = 2.3–26.4°
α = 71.806 (3)°µ = 1.26 mm1
β = 75.622 (3)°T = 293 K
γ = 66.844 (2)°Block, blue
V = 1186.6 (3) Å30.25 × 0.25 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4786 independent reflections
Radiation source: fine-focus sealed tube4259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ϕ and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 1212
Tmin = 0.743, Tmax = 0.884k = 1413
7629 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0786P)2 + 0.7132P]
where P = (Fo2 + 2Fc2)/3
4786 reflections(Δ/σ)max = 0.001
301 parametersΔρmax = 1.08 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Cu2(C6H19N4)2Cl2]·2C10H6O6S2·5H2Oγ = 66.844 (2)°
Mr = 1155.10V = 1186.6 (3) Å3
Triclinic, P1Z = 1
a = 9.9348 (15) ÅMo Kα radiation
b = 11.5498 (17) ŵ = 1.26 mm1
c = 11.9637 (17) ÅT = 293 K
α = 71.806 (3)°0.25 × 0.25 × 0.10 mm
β = 75.622 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4786 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
4259 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 0.884Rint = 0.017
7629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 1.08 e Å3
4786 reflectionsΔρmin = 0.52 e Å3
301 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.99644 (3)0.03706 (3)0.15407 (2)0.03066 (12)
S10.33042 (8)0.29981 (7)0.01995 (7)0.04172 (18)
S20.30605 (8)0.22336 (7)0.49481 (6)0.04280 (18)
Cl11.18179 (7)0.01126 (8)0.04844 (6)0.04496 (19)
O10.4340 (3)0.1793 (2)0.0328 (3)0.0655 (7)
O20.1974 (2)0.3501 (2)0.0575 (2)0.0567 (6)
O30.2965 (3)0.2938 (3)0.1295 (2)0.0621 (6)
O40.2518 (2)0.1551 (2)0.37776 (19)0.0515 (5)
O50.4109 (2)0.2776 (2)0.4876 (2)0.0558 (6)
O60.3611 (3)0.1457 (3)0.5810 (2)0.0719 (8)
O1W0.0678 (3)0.3620 (2)0.0099 (3)0.0605 (6)
H1WA0.11420.44460.02180.050*
H1WB0.01550.35910.00390.050*
O2W0.2953 (3)0.1065 (3)0.4091 (3)0.0697 (7)
H2WA0.30480.01290.41780.050*
H2WB0.38440.15790.40840.050*
N11.0797 (3)0.1350 (3)0.1925 (2)0.0441 (5)
H1A1.08100.19760.12490.053*
H1B1.17350.14830.22910.053*
N20.9530 (3)0.2261 (2)0.1912 (2)0.0473 (6)
H2A1.02920.24640.24080.057*
H2B0.94070.25080.12400.057*
N30.8449 (2)0.0830 (3)0.26754 (19)0.0380 (5)
N40.4608 (2)0.0608 (2)0.2062 (2)0.0371 (5)
H4B0.40170.06270.25230.071 (12)*
H4C0.48300.01520.15300.062 (11)*
H4D0.41490.12460.16880.057 (10)*
C10.4691 (3)0.4500 (3)0.0183 (2)0.0374 (6)
C20.4168 (3)0.4199 (3)0.0643 (3)0.0402 (6)
C30.4241 (4)0.4872 (3)0.1803 (3)0.0488 (7)
H3A0.38970.46650.23450.059*
C40.4831 (4)0.5872 (3)0.2186 (3)0.0542 (8)
H4A0.48640.63290.29790.065*
C50.5354 (4)0.6184 (3)0.1423 (3)0.0489 (7)
H5A0.57480.68490.16980.059*
C60.0199 (3)0.5411 (3)0.3105 (2)0.0417 (6)
H6A0.04640.53800.24010.050*
C70.1050 (3)0.4509 (3)0.3727 (2)0.0372 (6)
H7A0.19110.38810.34570.045*
C80.0649 (3)0.4506 (2)0.4787 (2)0.0309 (5)
C90.1483 (3)0.3554 (3)0.5453 (2)0.0342 (5)
C100.1082 (3)0.3606 (3)0.6485 (2)0.0397 (6)
H10A0.16580.29890.69180.048*
C110.9260 (3)0.0087 (4)0.3453 (3)0.0585 (10)
H11A0.85890.00920.39160.070*
H11B1.00410.01870.39980.070*
C120.9914 (4)0.1425 (4)0.2700 (3)0.0584 (9)
H12A1.05330.20130.32010.070*
H12B0.91320.17480.22240.070*
C130.8221 (4)0.2211 (4)0.3319 (3)0.0640 (10)
H13A0.90200.22580.39700.077*
H13B0.72980.25910.36460.077*
C140.8181 (4)0.2943 (3)0.2470 (4)0.0651 (10)
H14A0.73160.29840.18690.078*
H14B0.81340.38220.28910.078*
C150.7044 (3)0.0642 (3)0.2012 (2)0.0350 (6)
H15A0.72750.02140.14760.042*
H15B0.65570.12730.15320.042*
C160.5978 (3)0.0776 (4)0.2800 (2)0.0463 (7)
H16A0.64350.01260.32620.056*
H16B0.57450.16250.33470.056*
O3W0.5574 (19)0.4587 (12)0.4874 (16)0.200 (7)0.52
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02304 (17)0.0402 (2)0.02803 (17)0.01173 (13)0.00347 (12)0.00629 (13)
S10.0317 (3)0.0366 (4)0.0538 (4)0.0120 (3)0.0006 (3)0.0108 (3)
S20.0335 (3)0.0433 (4)0.0390 (4)0.0037 (3)0.0083 (3)0.0029 (3)
Cl10.0272 (3)0.0796 (5)0.0297 (3)0.0265 (3)0.0029 (2)0.0056 (3)
O10.0579 (14)0.0404 (12)0.0882 (19)0.0139 (11)0.0202 (13)0.0014 (12)
O20.0373 (11)0.0627 (14)0.0719 (15)0.0221 (10)0.0135 (10)0.0290 (12)
O30.0771 (17)0.0619 (15)0.0581 (14)0.0325 (13)0.0105 (12)0.0171 (12)
O40.0450 (12)0.0469 (12)0.0478 (12)0.0119 (10)0.0121 (9)0.0078 (9)
O50.0321 (10)0.0681 (15)0.0554 (13)0.0151 (10)0.0119 (9)0.0026 (11)
O60.0679 (16)0.0636 (15)0.0633 (16)0.0141 (13)0.0183 (13)0.0280 (13)
O1W0.0417 (12)0.0442 (12)0.0936 (19)0.0108 (10)0.0156 (12)0.0147 (12)
O2W0.0385 (12)0.0605 (15)0.0806 (18)0.0089 (11)0.0113 (12)0.0033 (13)
N10.0370 (12)0.0486 (14)0.0466 (13)0.0146 (11)0.0009 (10)0.0167 (11)
N20.0433 (14)0.0448 (14)0.0494 (14)0.0183 (11)0.0032 (11)0.0042 (11)
N30.0255 (10)0.0610 (15)0.0252 (10)0.0184 (10)0.0019 (8)0.0040 (10)
N40.0243 (10)0.0492 (14)0.0372 (12)0.0131 (10)0.0050 (9)0.0088 (10)
C10.0286 (12)0.0348 (13)0.0413 (14)0.0097 (11)0.0006 (10)0.0050 (11)
C20.0338 (13)0.0378 (14)0.0417 (14)0.0113 (11)0.0000 (11)0.0051 (11)
C30.0477 (17)0.0509 (17)0.0424 (16)0.0184 (14)0.0071 (13)0.0017 (13)
C40.063 (2)0.062 (2)0.0333 (14)0.0306 (17)0.0081 (14)0.0076 (14)
C50.0485 (17)0.0520 (17)0.0423 (16)0.0241 (14)0.0017 (13)0.0008 (13)
C60.0470 (16)0.0483 (16)0.0335 (13)0.0170 (13)0.0157 (12)0.0062 (12)
C70.0352 (13)0.0429 (14)0.0322 (13)0.0131 (11)0.0138 (10)0.0008 (11)
C80.0301 (12)0.0344 (12)0.0279 (11)0.0145 (10)0.0075 (9)0.0001 (9)
C90.0296 (12)0.0360 (13)0.0320 (12)0.0102 (10)0.0064 (10)0.0014 (10)
C100.0420 (15)0.0422 (15)0.0352 (13)0.0138 (12)0.0076 (11)0.0090 (11)
C110.0306 (14)0.120 (3)0.0361 (15)0.0290 (17)0.0063 (12)0.0378 (18)
C120.0424 (17)0.083 (3)0.069 (2)0.0303 (17)0.0125 (15)0.049 (2)
C130.0454 (18)0.085 (3)0.0509 (19)0.0340 (18)0.0211 (15)0.0248 (18)
C140.0391 (17)0.0441 (17)0.088 (3)0.0122 (14)0.0102 (17)0.0139 (17)
C150.0230 (11)0.0565 (16)0.0254 (11)0.0159 (11)0.0027 (9)0.0076 (11)
C160.0254 (12)0.083 (2)0.0310 (13)0.0200 (14)0.0034 (10)0.0125 (14)
O3W0.245 (19)0.131 (11)0.253 (15)0.061 (11)0.146 (15)0.005 (11)
Geometric parameters (Å, º) top
Cu1—N21.975 (3)C1—C5ii1.445 (4)
Cu1—N11.983 (2)C2—C31.362 (4)
Cu1—N32.081 (2)C3—C41.399 (5)
Cu1—Cl12.2818 (7)C3—H3A0.9300
Cu1—Cl1i2.6320 (7)C4—C51.351 (5)
Cu1—Cu1i3.5269 (8)C4—H4A0.9300
S1—O11.429 (3)C5—C1ii1.445 (4)
S1—O21.438 (2)C5—H5A0.9300
S1—O31.459 (3)C6—C71.355 (4)
S1—C21.787 (3)C6—C10iii1.405 (4)
S2—O61.442 (3)C6—H6A0.9300
S2—O51.442 (2)C7—C81.421 (3)
S2—O41.464 (2)C7—H7A0.9300
S2—C91.778 (3)C8—C8iii1.425 (5)
Cl1—Cu1i2.6320 (7)C8—C91.426 (4)
O1W—H1WA0.8623C9—C101.366 (4)
O1W—H1WB0.8346C10—C6iii1.405 (4)
O2W—H2WA1.0922C10—H10A0.9300
O2W—H2WB0.8502C11—C121.501 (6)
N1—C121.467 (4)C11—H11A0.9700
N1—H1A0.9000C11—H11B0.9700
N1—H1B0.9000C12—H12A0.9700
N2—C141.465 (4)C12—H12B0.9700
N2—H2A0.9000C13—C141.496 (6)
N2—H2B0.9000C13—H13A0.9700
N3—C151.485 (3)C13—H13B0.9700
N3—C111.486 (4)C14—H14A0.9700
N3—C131.491 (4)C14—H14B0.9700
N4—C161.474 (3)C15—C161.520 (3)
N4—H4B0.8900C15—H15A0.9700
N4—H4C0.8900C15—H15B0.9700
N4—H4D0.8900C16—H16A0.9700
C1—C21.407 (4)C16—H16B0.9700
C1—C1ii1.419 (5)O3W—O3Wiv1.20 (3)
N2—Cu1—N1154.12 (11)C2—C3—C4120.5 (3)
N2—Cu1—N385.23 (11)C2—C3—H3A119.8
N1—Cu1—N385.38 (10)C4—C3—H3A119.8
N2—Cu1—Cl193.80 (8)C5—C4—C3121.0 (3)
N1—Cu1—Cl192.84 (8)C5—C4—H4A119.5
N3—Cu1—Cl1173.53 (6)C3—C4—H4A119.5
N2—Cu1—Cl1i98.89 (8)C4—C5—C1ii120.9 (3)
N1—Cu1—Cl1i106.26 (8)C4—C5—H5A119.6
N3—Cu1—Cl1i97.93 (6)C1ii—C5—H5A119.6
Cl1—Cu1—Cl1i88.54 (3)C7—C6—C10iii120.6 (2)
N2—Cu1—Cu1i99.11 (8)C7—C6—H6A119.7
N1—Cu1—Cu1i103.94 (8)C10iii—C6—H6A119.7
N3—Cu1—Cu1i138.22 (6)C6—C7—C8121.1 (2)
Cl1—Cu1—Cu1i48.246 (18)C6—C7—H7A119.5
Cl1i—Cu1—Cu1i40.297 (16)C8—C7—H7A119.5
O1—S1—O2115.50 (17)C7—C8—C8iii119.1 (3)
O1—S1—O3111.16 (16)C7—C8—C9123.2 (2)
O2—S1—O3111.10 (16)C8iii—C8—C9117.7 (3)
O1—S1—C2107.97 (15)C10—C9—C8121.3 (2)
O2—S1—C2105.09 (13)C10—C9—S2117.6 (2)
O3—S1—C2105.28 (15)C8—C9—S2120.99 (19)
O6—S2—O5112.52 (17)C9—C10—C6iii120.2 (3)
O6—S2—O4112.88 (17)C9—C10—H10A119.9
O5—S2—O4111.88 (14)C6iii—C10—H10A119.9
O6—S2—C9106.41 (14)N3—C11—C12109.5 (2)
O5—S2—C9107.18 (13)N3—C11—H11A109.8
O4—S2—C9105.38 (12)C12—C11—H11A109.8
Cu1—Cl1—Cu1i91.46 (3)N3—C11—H11B109.8
H1WA—O1W—H1WB99.8C12—C11—H11B109.8
H2WA—O2W—H2WB102.9H11A—C11—H11B108.2
C12—N1—Cu1110.7 (2)N1—C12—C11108.0 (3)
C12—N1—H1A109.5N1—C12—H12A110.1
Cu1—N1—H1A109.5C11—C12—H12A110.1
C12—N1—H1B109.5N1—C12—H12B110.1
Cu1—N1—H1B109.5C11—C12—H12B110.1
H1A—N1—H1B108.1H12A—C12—H12B108.4
C14—N2—Cu1109.5 (2)N3—C13—C14109.0 (3)
C14—N2—H2A109.8N3—C13—H13A109.9
Cu1—N2—H2A109.8C14—C13—H13A109.9
C14—N2—H2B109.8N3—C13—H13B109.9
Cu1—N2—H2B109.8C14—C13—H13B109.9
H2A—N2—H2B108.2H13A—C13—H13B108.3
C15—N3—C11112.3 (2)N2—C14—C13107.9 (3)
C15—N3—C13112.0 (2)N2—C14—H14A110.1
C11—N3—C13113.0 (3)C13—C14—H14A110.1
C15—N3—Cu1111.72 (15)N2—C14—H14B110.1
C11—N3—Cu1102.17 (17)C13—C14—H14B110.1
C13—N3—Cu1104.97 (18)H14A—C14—H14B108.4
C16—N4—H4B109.5N3—C15—C16114.1 (2)
C16—N4—H4C109.5N3—C15—H15A108.7
H4B—N4—H4C109.5C16—C15—H15A108.7
C16—N4—H4D109.5N3—C15—H15B108.7
H4B—N4—H4D109.5C16—C15—H15B108.7
H4C—N4—H4D109.5H15A—C15—H15B107.6
C2—C1—C1ii120.4 (3)N4—C16—C15110.0 (2)
C2—C1—C5ii122.7 (3)N4—C16—H16A109.7
C1ii—C1—C5ii116.9 (3)C15—C16—H16A109.7
C3—C2—C1120.3 (3)N4—C16—H16B109.7
C3—C2—S1118.0 (2)C15—C16—H16B109.7
C1—C2—S1121.6 (2)H16A—C16—H16B108.2
N2—Cu1—Cl1—Cu1i98.82 (8)C1—C2—C3—C40.2 (5)
N1—Cu1—Cl1—Cu1i106.21 (8)S1—C2—C3—C4176.4 (3)
N2—Cu1—N1—C1272.3 (3)C2—C3—C4—C50.7 (5)
N3—Cu1—N1—C123.3 (2)C3—C4—C5—C1ii0.5 (5)
Cl1—Cu1—N1—C12177.1 (2)C10iii—C6—C7—C82.0 (4)
Cl1i—Cu1—N1—C1293.6 (2)C6—C7—C8—C8iii1.7 (4)
Cu1i—Cu1—N1—C12135.4 (2)C6—C7—C8—C9178.0 (3)
N1—Cu1—N2—C1483.9 (3)C7—C8—C9—C10178.2 (3)
N3—Cu1—N2—C1414.9 (2)C8iii—C8—C9—C102.1 (4)
Cl1—Cu1—N2—C14171.5 (2)C7—C8—C9—S23.3 (4)
Cl1i—Cu1—N2—C1482.4 (2)C8iii—C8—C9—S2176.4 (2)
Cu1i—Cu1—N2—C14123.3 (2)O6—S2—C9—C100.3 (3)
N2—Cu1—N3—C15107.9 (2)O5—S2—C9—C10120.9 (2)
N1—Cu1—N3—C1596.2 (2)O4—S2—C9—C10119.8 (2)
Cl1i—Cu1—N3—C159.60 (19)O6—S2—C9—C8178.9 (2)
Cu1i—Cu1—N3—C159.6 (3)O5—S2—C9—C860.5 (2)
N2—Cu1—N3—C11131.8 (2)O4—S2—C9—C858.8 (2)
N1—Cu1—N3—C1124.1 (2)C8—C9—C10—C6iii1.9 (4)
Cl1i—Cu1—N3—C11129.89 (19)S2—C9—C10—C6iii176.7 (2)
Cu1i—Cu1—N3—C11129.90 (17)C15—N3—C11—C1272.3 (3)
N2—Cu1—N3—C1313.6 (2)C13—N3—C11—C12159.8 (2)
N1—Cu1—N3—C13142.2 (2)Cu1—N3—C11—C1247.6 (3)
Cl1i—Cu1—N3—C13111.96 (19)Cu1—N1—C12—C1130.4 (3)
Cu1i—Cu1—N3—C13111.95 (19)N3—C11—C12—N153.7 (3)
C1ii—C1—C2—C30.5 (5)C15—N3—C13—C1482.1 (3)
C5ii—C1—C2—C3179.8 (3)C11—N3—C13—C14149.9 (3)
C1ii—C1—C2—S1177.0 (3)Cu1—N3—C13—C1439.3 (3)
C5ii—C1—C2—S13.7 (4)Cu1—N2—C14—C1340.7 (3)
O1—S1—C2—C3124.0 (3)N3—C13—C14—N254.0 (3)
O2—S1—C2—C3112.3 (3)C11—N3—C15—C1657.6 (3)
O3—S1—C2—C35.1 (3)C13—N3—C15—C1670.9 (3)
O1—S1—C2—C159.4 (3)Cu1—N3—C15—C16171.7 (2)
O2—S1—C2—C164.3 (3)N3—C15—C16—N4178.5 (3)
O3—S1—C2—C1178.3 (2)
Symmetry codes: (i) x2, y, z; (ii) x1, y1, z; (iii) x, y1, z+1; (iv) x1, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2v0.862.122.975 (3)172
O1W—H1WB···O20.832.072.883 (3)165
O2W—H2WA···O41.091.983.009 (4)156
O2W—H2WB···O5vi0.852.283.025 (3)146
O2W—H2WB···O6vi0.852.563.238 (4)138
N1—H1A···O1Wvii0.902.102.982 (4)167
N1—H1B···O2Wviii0.902.202.945 (4)140
N2—H2A···O4viii0.902.483.226 (4)141
N2—H2B···O1Wviii0.902.112.977 (4)160
N4—H4B···O40.892.112.941 (3)154
N4—H4C···O1vii0.892.002.879 (3)170
N4—H4D···O30.891.982.845 (4)164
Symmetry codes: (v) x, y1, z; (vi) x1, y, z+1; (vii) x1, y, z; (viii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu2(C6H19N4)2Cl2]·2C10H6O6S2·5H2O
Mr1155.10
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.9348 (15), 11.5498 (17), 11.9637 (17)
α, β, γ (°)71.806 (3), 75.622 (3), 66.844 (2)
V3)1186.6 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.26
Crystal size (mm)0.25 × 0.25 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Blessing, 1995)
Tmin, Tmax0.743, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
7629, 4786, 4259
Rint0.017
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.01
No. of reflections4786
No. of parameters301
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.08, 0.52

Computer programs: SMART (Bruker, 1998), SMART, SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2i0.862.122.975 (3)172
O1W—H1WB···O20.832.072.883 (3)165
O2W—H2WA···O41.091.983.009 (4)156
O2W—H2WB···O5ii0.852.283.025 (3)146
O2W—H2WB···O6ii0.852.563.238 (4)138
N1—H1A···O1Wiii0.902.102.982 (4)167
N1—H1B···O2Wiv0.902.202.945 (4)140
N2—H2A···O4iv0.902.483.226 (4)141
N2—H2B···O1Wiv0.902.112.977 (4)160
N4—H4B···O40.892.112.941 (3)154
N4—H4C···O1iii0.892.002.879 (3)170
N4—H4D···O30.891.982.845 (4)164
Symmetry codes: (i) x, y1, z; (ii) x1, y, z+1; (iii) x1, y, z; (iv) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds