Download citation
Download citation
link to html
The crystal structures of two 1-oxa-4-thia­spiro­[4.5]­decane derivatives, ethyl 6-benzyl­idene-1-oxa-4-thia­spiro­[4.5]­decane-7-acetate, C19H24O3S, and (6-ethyl­idene-1-oxa-4-thia­spiro­[4.5]­decan-7-yl)­ethyl 4-bromo­benzoate, C19H23BrO3S, obtained under Johnson orthoester Claisen rearrangement conditions, exhibit different olefin geometry. Both structures are composed of independent mol­ecules separated by normal van der Waals distances. The S-Csp3 bond distances are significantly different from each other, as has been observed in similar structures; the remaining molecular dimensions are as expected.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100013603/da1149sup1.cif
Contains datablocks global, III, VI

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100013603/da1149IIIsup2.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100013603/da1149VIsup3.hkl
Contains datablock VI

CCDC references: 158259; 158260

Comment top

In studies of 1,3-diastereoface selection under Johnson orthoester Claisen rearrangement conditions, we have reacted (1-oxa-4-thiaspiro[4.5]dec-6-en-6-yl)(phenyl)methanol, (I) and (1-oxa-4-thiaspiro[4.5]dec-6-en-6-yl)(methyl)methanol, (II) with triethyl orthoacetate. Whereas (I) furnished a single product identified as ethyl 6-benzylidene-1-oxa-4-thiaspiro[4.5]decane-7-acetate, (III), (II) furnished a mixture of two products which were inseparable by routine chromatographic techniques. However, the corresponding alcohols, obtained on LiAlH4 reduction in Et2O, separated well by radial chromatography. The more polar alcohol was identified, from its 4-bromobenzoate ester derivative, as 2-(6-ethylidene-1-oxa-4-thiaspiro[4.5]decan-7-yl)ethanol, (IV). Since (IV) is a consequence of rearrangement anti to the acetal sulfur, the less polar alcohol must, therefore, be a product of rearrangement syn to the acetal sulfur and possess the stereostructure shown for (V). Compound (III) is also a consequence of rearrangement syn to the acetal sulfur. The difference in the olefin geometry of (IV) from that of (III) and (V) must be noted. In this paper, we describe the crystal structures of (III) and of the 4-bromobenzoate ester of (IV), (VI). \sch

The structures of (III) and (VI) are presented in Figs. 1 and 2, respectively, and are composed of independent molecules separated by normal van der Waals distances. One C atom of the heterocyclic ring in (III) is disordered over two sites, C1 and C1*, with nonequivalent site occupancy factors of 0.58 (2) and 0.42 (2), respectively, indicating the presence of two conformations of the five-membered ring. It is interesting to note that in (III), as a result of the disorder, the rings S1/C1/C2/O1/C3 and S1/C1*/C2/O1/C3 adopt C2- and S1-envelope conformations, with atoms S1 and C2 0.773 (19) and 0.554 (11) Å, respectively, out of the planes of the remaining ring atoms [maximum deviations 0.009 (5) and 0.014 (4) Å, respectively]. The corresponding heterocyclic ring in (VI) adopts a C2-envelope conformation, with C2 0.542 (9) Å out of the plane formed by the remaining ring atoms [maximium deviation 0.030 (3) Å for C3]. In both structures the six-membered ring C3—C8 adopts a chair conformation, with puckering parameters (Cremer & Pople, 1975) Q = 0.539 (6) and 0.590 (6) Å, and θ = 171.0 (6) and 5.1 (6) and ϕ = 69 (4) and 83 (6)°, in (III) and (VI), respectively. The phenyl rings in both the structures are essentially planar.

The bond distances and angles in the two structures are normal and agree well with the corresponding values reported for similar compounds in the Cambridge Structural Database (Allen & Kennard, 1993). The S—Csp3 bond distances, although significantly different from each other in (III) [1.880 (5) Å for S—C3, and a mean of 1.811 (5) Å for S—C1 and S—C1*], are in excellent agreement with the corresponding bond distances in (VI) [1.878 (5) and 1.798 (6) Å]. Similar nonequivalent S—C bond distances have been reported in the crystal structures of cyclohexanespiro-2'-(1',3'-oxathiolan-5'-one 3'-oxide) (Frechina et al., 1992), (+)-(3S,4R)-6-phenyl-1-oxa-4-thiaspiro[4.5]decan-8-one (Sonoda et al., 1992), two derivatives of an oxa-thia-spiro-decene (Parvez et al., 1997) and 2-(7-ethylidene-6-methyl-1-oxa-4-thiaspiro[4.5]dec-7-yl)ethanol (Parvez et al., 1998).

Experimental top

Compound (III) was prepared by the Johnson orthoester Claisen rearrangement of (I) on treatment with triethylorthoacetate in toluene at reflux under nitrogen. A similar reaction using (II) furnished an ester which was reduced with lithium aluminium hydride in diethyl ether at 253–273 K to generate the alcohol (IV). Alcohol (IV) was then esterified with 4-bromobenzoyl chloride following standard methods to obtain (VI).

Refinement top

One C atom of the heterocyclic ring in (III) was disordered over two sites, C1 and C1*, with nonequivalent site occupancy factors of 0.58 (2) and 0.42 (2), respectively. For both compounds (III) and (VI) most of the H atoms were located from difference Fourier syntheses but these were included in the refinements at geometrically idealized positions with C—H 0.93–1.00 Å, utilizing a riding model and isotropic displacement parameters. Although the starting material for (III) was a racemic mixture of diastereomers, the final product of (III) crystallized in a non-centrosymmetric space group. However, its absolute structure could not be determined because the equivalent reflections were not collected. The Flack parameter (Flack, 1983) for the inverted structure was 0.12 (18).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988) for (III); CAD-4 Software (Enraf-Nonius, 1989) for (VI). Cell refinement: MSC/AFC Diffractometer Control Software for (III); CAD-4 Software for (VI). For both compounds, data reduction: TEXSAN (Molecular Structure Corporation, 1994); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The ORTEPII (Johnson, 1976) drawing of (III) with 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. ORTEPII (Johnson, 1976) drawing of (VI) with 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are shown as small spheres of arbitrary radii.
(III) ethyl 6-benzylidene-1-oxa-4-thiaspiro[4.5]decane-7-acetate top
Crystal data top
C19H24O3SF(000) = 712
Mr = 332.44Dx = 1.269 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2c -2nCell parameters from 25 reflections
a = 10.369 (2) Åθ = 10–15°
b = 20.791 (3) ŵ = 0.20 mm1
c = 8.071 (3) ÅT = 170 K
V = 1740.0 (8) Å3Plate, colourless
Z = 40.52 × 0.48 × 0.14 mm
Data collection top
Rigaku AFC-6S
diffractometer
1147 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.00
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
ω/2θ scansh = 013
Absorption correction: empirical (using intensity measurements)
via ψ-scan (3 reflections; North et al., 1968)
k = 027
Tmin = 0.90, Tmax = 0.97l = 010
2150 measured reflections3 standard reflections every 200 reflections
2150 independent reflections intensity decay: <0.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.055P)2 + 0.82P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.01
2150 reflectionsΔρmax = 0.33 e Å3
219 parametersΔρmin = 0.28 e Å3
1 restraintAbsolute structure: (Flack, 1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (18)
Crystal data top
C19H24O3SV = 1740.0 (8) Å3
Mr = 332.44Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 10.369 (2) ŵ = 0.20 mm1
b = 20.791 (3) ÅT = 170 K
c = 8.071 (3) Å0.52 × 0.48 × 0.14 mm
Data collection top
Rigaku AFC-6S
diffractometer
1147 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ-scan (3 reflections; North et al., 1968)
Rint = 0.00
Tmin = 0.90, Tmax = 0.973 standard reflections every 200 reflections
2150 measured reflections intensity decay: <0.1%
2150 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.140Δρmax = 0.33 e Å3
S = 1.01Δρmin = 0.28 e Å3
2150 reflectionsAbsolute structure: (Flack, 1983)
219 parametersAbsolute structure parameter: 0.05 (18)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.93535 (13)0.19996 (7)0.76797 (19)0.0381 (3)
O10.9410 (3)0.09980 (18)0.9678 (4)0.0359 (9)
O21.4073 (3)0.1698 (2)0.4511 (5)0.0416 (10)
O31.2621 (4)0.2080 (2)0.2721 (7)0.0625 (13)
C10.8669 (12)0.2086 (6)0.9739 (14)0.048 (4)0.58 (2)
H1A0.88650.25141.02100.058*0.58 (2)
H1B0.77230.20230.97200.058*0.58 (2)
C1*0.9642 (19)0.2133 (7)0.9860 (18)0.043 (5)0.42 (2)
H1*11.05610.22401.00500.051*0.42 (2)
H1*20.91070.24941.02650.051*0.42 (2)
C20.9318 (6)0.1565 (3)1.0699 (7)0.0497 (16)
H2A1.01910.17071.10370.060*
H2B0.88160.14681.17120.060*
C30.9849 (5)0.1142 (2)0.8052 (6)0.0253 (12)
C41.1324 (4)0.1093 (2)0.7915 (6)0.0242 (11)
C51.1871 (5)0.1132 (3)0.6168 (6)0.0270 (12)
H51.27700.09580.62160.032*
C61.1108 (5)0.0698 (3)0.4980 (7)0.0320 (12)
H6A1.14050.07780.38320.038*
H6B1.12920.02430.52480.038*
C70.9653 (5)0.0810 (3)0.5070 (7)0.0382 (14)
H7A0.92060.05090.43120.046*
H7B0.94510.12550.47160.046*
C80.9177 (5)0.0703 (3)0.6857 (7)0.0351 (13)
H8A0.82360.07810.69080.042*
H8B0.93350.02510.71810.042*
C91.2005 (5)0.0950 (2)0.9241 (7)0.0301 (13)
H91.15250.09051.02370.036*
C101.3436 (5)0.0846 (2)0.9401 (7)0.0297 (11)
C111.3869 (5)0.0379 (3)1.0489 (8)0.0412 (14)
H111.32650.01301.11000.049*
C121.5183 (5)0.0271 (3)1.0690 (8)0.0450 (16)
H121.54680.00541.14320.054*
C131.6062 (5)0.0623 (3)0.9845 (8)0.0434 (15)
H131.69580.05440.99870.052*
C141.5649 (5)0.1092 (3)0.8785 (7)0.0363 (13)
H141.62640.13420.81970.044*
C151.4332 (5)0.1210 (2)0.8552 (6)0.0301 (11)
H151.40570.15390.78150.036*
C161.1965 (5)0.1821 (3)0.5509 (6)0.0324 (12)
H16A1.10980.19640.51490.039*
H16B1.22460.21080.64190.039*
C171.2895 (5)0.1891 (3)0.4068 (7)0.0341 (13)
C181.5085 (5)0.1752 (3)0.3257 (7)0.0379 (13)
H18A1.52490.22080.29830.045*
H18B1.48320.15220.22330.045*
C191.6257 (6)0.1451 (3)0.4004 (9)0.0540 (18)
H19A1.64770.16750.50340.081*
H19B1.69790.14840.32250.081*
H19C1.60840.09970.42440.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0411 (7)0.0432 (7)0.0301 (6)0.0125 (7)0.0059 (9)0.0007 (7)
O10.0305 (19)0.053 (2)0.0245 (19)0.0032 (18)0.0058 (18)0.0061 (18)
O20.032 (2)0.068 (3)0.025 (2)0.0022 (19)0.0057 (17)0.010 (2)
O30.045 (2)0.110 (4)0.032 (2)0.016 (2)0.011 (3)0.031 (3)
C10.032 (7)0.071 (8)0.042 (6)0.002 (5)0.007 (5)0.020 (6)
C1*0.060 (13)0.036 (9)0.032 (8)0.002 (7)0.005 (8)0.005 (6)
C20.049 (4)0.073 (4)0.027 (3)0.001 (4)0.006 (3)0.008 (3)
C30.024 (2)0.026 (3)0.026 (3)0.002 (2)0.002 (2)0.006 (2)
C40.029 (2)0.018 (2)0.026 (3)0.0025 (19)0.002 (2)0.002 (2)
C50.025 (3)0.040 (3)0.016 (2)0.002 (2)0.003 (2)0.001 (2)
C60.036 (3)0.034 (3)0.026 (3)0.001 (2)0.003 (2)0.005 (2)
C70.036 (3)0.050 (4)0.029 (3)0.007 (3)0.006 (3)0.008 (3)
C80.026 (3)0.045 (3)0.035 (3)0.003 (3)0.006 (2)0.005 (3)
C90.025 (3)0.036 (3)0.029 (3)0.002 (2)0.007 (2)0.000 (2)
C100.030 (3)0.034 (3)0.026 (3)0.003 (2)0.003 (2)0.001 (2)
C110.037 (3)0.047 (3)0.040 (3)0.004 (3)0.005 (3)0.005 (3)
C120.042 (3)0.050 (4)0.043 (4)0.007 (3)0.012 (3)0.016 (3)
C130.023 (2)0.059 (4)0.048 (4)0.010 (3)0.004 (3)0.008 (3)
C140.029 (3)0.046 (3)0.034 (3)0.002 (3)0.003 (3)0.005 (3)
C150.030 (3)0.035 (3)0.026 (3)0.003 (2)0.008 (2)0.001 (2)
C160.029 (3)0.046 (3)0.023 (3)0.000 (2)0.004 (2)0.004 (2)
C170.029 (3)0.046 (4)0.027 (3)0.000 (2)0.005 (2)0.003 (3)
C180.037 (3)0.053 (3)0.024 (3)0.006 (3)0.010 (2)0.007 (3)
C190.038 (3)0.081 (5)0.043 (4)0.005 (3)0.007 (3)0.006 (4)
Geometric parameters (Å, º) top
S1—C1*1.806 (14)C7—H7A0.9900
S1—C11.816 (11)C7—H7B0.9900
S1—C31.880 (5)C8—H8A0.9900
O1—C31.421 (6)C8—H8B0.9900
O1—C21.442 (7)C9—C101.506 (7)
O2—C171.335 (6)C9—H90.9500
O2—C181.462 (6)C10—C151.381 (7)
O3—C171.191 (7)C10—C111.385 (8)
C1—C21.491 (13)C11—C121.390 (8)
C1—H1A0.9900C11—H110.9500
C1—H1B0.9900C12—C131.352 (8)
C1*—C21.401 (15)C12—H120.9500
C1*—H1*10.9900C13—C141.366 (8)
C1*—H1*20.9900C13—H130.9500
C2—H2A0.9900C14—C151.400 (7)
C2—H2B0.9900C14—H140.9500
C3—C81.499 (7)C15—H150.9500
C3—C41.537 (6)C16—C171.517 (7)
C4—C91.317 (7)C16—H16A0.9900
C4—C51.522 (7)C16—H16B0.9900
C5—C161.532 (7)C18—C191.493 (8)
C5—C61.536 (7)C18—H18A0.9900
C5—H51.0000C18—H18B0.9900
C6—C71.528 (7)C19—H19A0.9800
C6—H6A0.9900C19—H19B0.9800
C6—H6B0.9900C19—H19C0.9800
C7—C81.541 (8)
C1*—S1—C132.7 (6)C6—C7—H7B109.7
C1*—S1—C386.8 (5)C8—C7—H7B109.7
C1—S1—C393.1 (4)H7A—C7—H7B108.2
C3—O1—C2112.1 (4)C3—C8—C7111.4 (4)
C17—O2—C18116.7 (4)C3—C8—H8A109.3
C2—C1—S1103.2 (6)C7—C8—H8A109.3
C2—C1—H1A111.1C3—C8—H8B109.3
S1—C1—H1A111.1C7—C8—H8B109.3
C2—C1—H1B111.1H8A—C8—H8B108.0
S1—C1—H1B111.1C4—C9—C10129.1 (5)
H1A—C1—H1B109.1C4—C9—H9115.4
C2—C1*—S1107.6 (9)C10—C9—H9115.4
C2—C1*—H1*1110.2C15—C10—C11118.8 (5)
S1—C1*—H1*1110.2C15—C10—C9122.8 (5)
C2—C1*—H1*2110.2C11—C10—C9118.3 (5)
S1—C1*—H1*2110.2C10—C11—C12120.3 (5)
H1*1—C1*—H1*2108.5C10—C11—H11119.9
C1*—C2—O1113.4 (7)C12—C11—H11119.9
C1*—C2—C141.1 (8)C13—C12—C11121.0 (5)
O1—C2—C1109.0 (6)C13—C12—H12119.5
C1*—C2—H2A70.3C11—C12—H12119.5
O1—C2—H2A109.9C12—C13—C14119.3 (5)
C1—C2—H2A109.9C12—C13—H13120.3
C1*—C2—H2B134.2C14—C13—H13120.3
O1—C2—H2B109.9C13—C14—C15121.0 (5)
C1—C2—H2B109.9C13—C14—H14119.5
H2A—C2—H2B108.3C15—C14—H14119.5
O1—C3—C8108.5 (4)C10—C15—C14119.5 (5)
O1—C3—C4111.8 (4)C10—C15—H15120.2
C8—C3—C4112.1 (4)C14—C15—H15120.2
O1—C3—S1105.0 (3)C17—C16—C5113.3 (4)
C8—C3—S1110.3 (4)C17—C16—H16A108.9
C4—C3—S1108.8 (3)C5—C16—H16A108.9
C9—C4—C5124.4 (4)C17—C16—H16B108.9
C9—C4—C3119.3 (5)C5—C16—H16B108.9
C5—C4—C3115.7 (4)H16A—C16—H16B107.7
C4—C5—C16113.3 (4)O3—C17—O2124.2 (5)
C4—C5—C6110.8 (4)O3—C17—C16125.4 (5)
C16—C5—C6111.4 (4)O2—C17—C16110.4 (4)
C4—C5—H5107.0O2—C18—C19105.8 (5)
C16—C5—H5107.0O2—C18—H18A110.6
C6—C5—H5107.0C19—C18—H18A110.6
C7—C6—C5112.9 (4)O2—C18—H18B110.6
C7—C6—H6A109.0C19—C18—H18B110.6
C5—C6—H6A109.0H18A—C18—H18B108.7
C7—C6—H6B109.0C18—C19—H19A109.5
C5—C6—H6B109.0C18—C19—H19B109.5
H6A—C6—H6B107.8H19A—C19—H19B109.5
C6—C7—C8109.8 (5)C18—C19—H19C109.5
C6—C7—H7A109.7H19A—C19—H19C109.5
C8—C7—H7A109.7H19B—C19—H19C109.5
C1*—S1—C1—C258.0 (10)C3—C4—C5—C646.1 (6)
C3—S1—C1—C221.2 (7)C4—C5—C6—C750.9 (6)
C1—S1—C1*—C267.3 (13)C16—C5—C6—C776.1 (6)
C3—S1—C1*—C233.5 (10)C5—C6—C7—C857.4 (6)
S1—C1*—C2—O125.3 (13)O1—C3—C8—C7177.3 (4)
S1—C1*—C2—C167.2 (11)C4—C3—C8—C753.4 (6)
C3—O1—C2—C1*1.8 (11)S1—C3—C8—C768.1 (5)
C3—O1—C2—C145.7 (7)C6—C7—C8—C358.3 (6)
S1—C1—C2—C1*63.9 (11)C5—C4—C9—C105.4 (9)
S1—C1—C2—O140.2 (8)C3—C4—C9—C10176.9 (5)
C2—O1—C3—C8144.5 (4)C4—C9—C10—C1538.6 (9)
C2—O1—C3—C491.4 (5)C4—C9—C10—C11143.5 (6)
C2—O1—C3—S126.5 (5)C15—C10—C11—C121.3 (9)
C1*—S1—C3—O133.9 (7)C9—C10—C11—C12179.3 (6)
C1—S1—C3—O11.8 (5)C10—C11—C12—C130.6 (10)
C1*—S1—C3—C8150.7 (7)C11—C12—C13—C140.3 (10)
C1—S1—C3—C8118.6 (5)C12—C13—C14—C150.5 (9)
C1*—S1—C3—C485.9 (7)C11—C10—C15—C141.1 (8)
C1—S1—C3—C4118.0 (5)C9—C10—C15—C14179.0 (5)
O1—C3—C4—C91.8 (7)C13—C14—C15—C100.3 (8)
C8—C3—C4—C9123.9 (5)C4—C5—C16—C17160.5 (4)
S1—C3—C4—C9113.8 (5)C6—C5—C16—C1773.7 (5)
O1—C3—C4—C5170.5 (4)C18—O2—C17—O32.5 (9)
C8—C3—C4—C548.4 (6)C18—O2—C17—C16178.6 (4)
S1—C3—C4—C573.9 (5)C5—C16—C17—O3120.7 (7)
C9—C4—C5—C16108.2 (6)C5—C16—C17—O258.2 (6)
C3—C4—C5—C1679.9 (5)C17—O2—C18—C19174.8 (5)
C9—C4—C5—C6125.7 (5)
(VI) 2-(6-ethylidene-1-oxa-4-thiaspiro[4.5]decan-7-yl)ethyl 4-bromobenzoate top
Crystal data top
C19H23BrO3SF(000) = 848
Mr = 411.34Dx = 1.477 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 7.243 (2) ÅCell parameters from 25 reflections
b = 11.541 (1) Åθ = 20–30°
c = 22.180 (5) ŵ = 4.20 mm1
β = 94.09 (2)°T = 293 K
V = 1849.3 (7) Å3Needle, colourless
Z = 40.30 × 0.16 × 0.10 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
2207 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.03
Graphite monochromatorθmax = 68°, θmin = 5°
ω/2θ scansh = 08
Absorption correction: empirical (using intensity measurements)
via ψ-scan (3 reflections; North et al., 1968)
k = 013
Tmin = 0.37, Tmax = 0.68l = 2626
3651 measured reflections3 standard reflections every 200 reflections
3372 independent reflections intensity decay: <0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0736P)2 + 2.357P]
where P = (Fo2 + 2Fc2)/3
3372 reflections(Δ/σ)max < 0.01
217 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
C19H23BrO3SV = 1849.3 (7) Å3
Mr = 411.34Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.243 (2) ŵ = 4.20 mm1
b = 11.541 (1) ÅT = 293 K
c = 22.180 (5) Å0.30 × 0.16 × 0.10 mm
β = 94.09 (2)°
Data collection top
Enraf-Nonius CAD4
diffractometer
2207 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ-scan (3 reflections; North et al., 1968)
Rint = 0.03
Tmin = 0.37, Tmax = 0.683 standard reflections every 200 reflections
3651 measured reflections intensity decay: <0.1%
3372 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.164H-atom parameters constrained
S = 1.04Δρmax = 0.43 e Å3
3372 reflectionsΔρmin = 0.83 e Å3
217 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.21939 (9)0.37684 (6)0.32880 (3)0.0713 (3)
S10.2539 (2)0.36685 (12)0.04414 (6)0.0555 (4)
O10.1207 (5)0.2545 (3)0.05246 (16)0.0561 (10)
O20.4492 (5)0.3296 (3)0.17692 (14)0.0468 (9)
O30.4897 (6)0.5198 (3)0.16423 (19)0.0669 (11)
C10.2675 (10)0.4330 (6)0.0288 (3)0.0734 (19)
H1A0.38850.42080.04390.088*
H1B0.24390.51560.02690.088*
C20.1219 (11)0.3739 (6)0.0675 (3)0.0740 (19)
H2A0.14580.38330.10970.089*
H2B0.00230.40790.06130.089*
C30.1267 (7)0.2373 (4)0.0112 (2)0.0428 (11)
C40.0595 (6)0.2278 (4)0.0373 (2)0.0383 (11)
C50.0341 (7)0.2095 (4)0.1055 (2)0.0425 (11)
H50.04580.27230.12170.051*
C60.0726 (7)0.0961 (5)0.1178 (3)0.0529 (13)
H6A0.00070.03190.10040.063*
H6B0.09030.08360.16110.063*
C70.2558 (7)0.0993 (5)0.0916 (3)0.0585 (15)
H7A0.33280.15770.11230.070*
H7B0.31650.02490.09790.070*
C80.2376 (7)0.1266 (5)0.0239 (3)0.0533 (13)
H8A0.17660.06250.00230.064*
H8B0.35990.13540.00930.064*
C90.2215 (7)0.2251 (5)0.0066 (2)0.0486 (12)
H90.32100.21820.03060.058*
C100.2766 (9)0.2311 (6)0.0602 (2)0.0687 (18)
H10A0.40880.22560.06660.103*
H10B0.23580.30340.07600.103*
H10C0.22020.16820.08040.103*
C110.2104 (7)0.2135 (5)0.1396 (2)0.0460 (12)
H11A0.18210.18710.18070.055*
H11B0.30120.16100.12040.055*
C120.2925 (7)0.3342 (5)0.1409 (2)0.0497 (13)
H12A0.33070.35950.10020.060*
H12B0.20140.38850.15830.060*
C130.5375 (7)0.4287 (5)0.1841 (2)0.0467 (12)
C140.7036 (7)0.4138 (4)0.2188 (2)0.0421 (11)
C150.8280 (8)0.5035 (5)0.2202 (2)0.0549 (14)
H150.80720.57100.19880.066*
C160.9834 (8)0.4955 (5)0.2526 (3)0.0600 (15)
H161.06620.55690.25410.072*
C171.0120 (8)0.3923 (5)0.2832 (2)0.0500 (13)
C180.8921 (8)0.3003 (5)0.2806 (2)0.0565 (14)
H180.91490.23110.30030.068*
C190.7390 (7)0.3127 (5)0.2487 (2)0.0531 (14)
H190.65650.25120.24720.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0631 (4)0.0805 (5)0.0740 (5)0.0032 (4)0.0311 (3)0.0040 (4)
S10.0572 (8)0.0511 (8)0.0589 (8)0.0150 (7)0.0081 (6)0.0042 (7)
O10.066 (2)0.062 (2)0.044 (2)0.001 (2)0.0207 (18)0.0003 (17)
O20.054 (2)0.046 (2)0.0434 (18)0.0013 (17)0.0222 (16)0.0017 (15)
O30.081 (3)0.043 (2)0.082 (3)0.009 (2)0.035 (2)0.002 (2)
C10.092 (5)0.061 (4)0.071 (4)0.008 (4)0.027 (4)0.015 (3)
C20.100 (5)0.073 (4)0.051 (3)0.011 (4)0.014 (3)0.017 (3)
C30.043 (3)0.048 (3)0.038 (3)0.003 (2)0.009 (2)0.002 (2)
C40.040 (3)0.038 (3)0.037 (2)0.000 (2)0.006 (2)0.001 (2)
C50.040 (3)0.048 (3)0.039 (3)0.008 (2)0.002 (2)0.003 (2)
C60.053 (3)0.052 (3)0.054 (3)0.000 (3)0.004 (3)0.013 (3)
C70.045 (3)0.052 (3)0.077 (4)0.005 (3)0.002 (3)0.014 (3)
C80.047 (3)0.048 (3)0.067 (3)0.003 (3)0.013 (3)0.000 (3)
C90.046 (3)0.056 (3)0.043 (3)0.005 (2)0.000 (2)0.005 (2)
C100.063 (4)0.094 (5)0.047 (3)0.004 (4)0.009 (3)0.005 (3)
C110.048 (3)0.051 (3)0.040 (3)0.002 (2)0.011 (2)0.004 (2)
C120.051 (3)0.056 (3)0.044 (3)0.010 (3)0.018 (2)0.001 (2)
C130.058 (3)0.043 (3)0.041 (3)0.009 (2)0.011 (2)0.003 (2)
C140.050 (3)0.042 (3)0.035 (2)0.001 (2)0.008 (2)0.007 (2)
C150.067 (4)0.038 (3)0.061 (3)0.001 (3)0.016 (3)0.003 (3)
C160.062 (4)0.050 (3)0.070 (4)0.007 (3)0.018 (3)0.009 (3)
C170.062 (3)0.053 (3)0.035 (3)0.003 (3)0.005 (2)0.008 (2)
C180.072 (4)0.050 (3)0.050 (3)0.011 (3)0.017 (3)0.013 (3)
C190.055 (3)0.055 (3)0.053 (3)0.014 (3)0.026 (3)0.010 (3)
Geometric parameters (Å, º) top
Br1—C171.878 (5)C7—H7B0.9700
S1—C11.798 (6)C8—H8A0.9700
S1—C31.876 (5)C8—H8B0.9700
O1—C21.418 (7)C9—C101.507 (7)
O1—C31.423 (6)C9—H90.9300
O2—C131.325 (6)C10—H10A0.9600
O2—C121.434 (5)C10—H10B0.9600
O3—C131.201 (6)C10—H10C0.9600
C1—C21.478 (9)C11—C121.516 (7)
C1—H1A0.9700C11—H11A0.9700
C1—H1B0.9700C11—H11B0.9700
C2—H2A0.9700C12—H12A0.9700
C2—H2B0.9700C12—H12B0.9700
C3—C41.509 (6)C13—C141.484 (7)
C3—C81.525 (7)C14—C151.374 (7)
C4—C91.314 (7)C14—C191.376 (7)
C4—C51.525 (6)C15—C161.382 (7)
C5—C111.530 (6)C15—H150.9300
C5—C61.534 (7)C16—C171.393 (8)
C5—H50.9800C16—H160.9300
C6—C71.487 (7)C17—C181.375 (7)
C6—H6A0.9700C18—C191.365 (7)
C6—H6B0.9700C18—H180.9300
C7—C81.531 (8)C19—H190.9300
C7—H7A0.9700
C1—S1—C392.6 (3)C3—C8—H8B109.4
C2—O1—C3111.6 (4)C7—C8—H8B109.4
C13—O2—C12116.3 (4)H8A—C8—H8B108.0
C2—C1—S1104.1 (4)C4—C9—C10132.2 (5)
C2—C1—H1A110.9C4—C9—H9113.9
S1—C1—H1A110.9C10—C9—H9113.9
C2—C1—H1B110.9C9—C10—H10A109.5
S1—C1—H1B110.9C9—C10—H10B109.5
H1A—C1—H1B109.0H10A—C10—H10B109.5
O1—C2—C1109.2 (5)C9—C10—H10C109.5
O1—C2—H2A109.8H10A—C10—H10C109.5
C1—C2—H2A109.8H10B—C10—H10C109.5
O1—C2—H2B109.8C12—C11—C5112.3 (4)
C1—C2—H2B109.8C12—C11—H11A109.1
H2A—C2—H2B108.3C5—C11—H11A109.1
O1—C3—C4115.2 (4)C12—C11—H11B109.1
O1—C3—C8106.2 (4)C5—C11—H11B109.1
C4—C3—C8110.0 (4)H11A—C11—H11B107.9
O1—C3—S1104.8 (3)O2—C12—C11107.7 (4)
C4—C3—S1109.6 (3)O2—C12—H12A110.2
C8—C3—S1111.0 (4)C11—C12—H12A110.2
C9—C4—C3126.3 (4)O2—C12—H12B110.2
C9—C4—C5123.4 (4)C11—C12—H12B110.2
C3—C4—C5110.1 (4)H12A—C12—H12B108.5
C4—C5—C11116.1 (4)O3—C13—O2123.9 (5)
C4—C5—C6108.5 (4)O3—C13—C14123.9 (5)
C11—C5—C6111.4 (4)O2—C13—C14112.3 (4)
C4—C5—H5106.7C15—C14—C19118.9 (5)
C11—C5—H5106.7C15—C14—C13118.8 (5)
C6—C5—H5106.7C19—C14—C13122.3 (5)
C7—C6—C5111.2 (4)C14—C15—C16121.4 (5)
C7—C6—H6A109.4C14—C15—H15119.3
C5—C6—H6A109.4C16—C15—H15119.3
C7—C6—H6B109.4C15—C16—C17117.7 (5)
C5—C6—H6B109.4C15—C16—H16121.1
H6A—C6—H6B108.0C17—C16—H16121.1
C6—C7—C8111.8 (5)C18—C17—C16121.6 (5)
C6—C7—H7A109.3C18—C17—Br1118.7 (4)
C8—C7—H7A109.3C16—C17—Br1119.7 (4)
C6—C7—H7B109.3C19—C18—C17118.7 (5)
C8—C7—H7B109.3C19—C18—H18120.7
H7A—C7—H7B107.9C17—C18—H18120.7
C3—C8—C7111.2 (4)C18—C19—C14121.7 (5)
C3—C8—H8A109.4C18—C19—H19119.2
C7—C8—H8A109.4C14—C19—H19119.2
C3—S1—C1—C219.3 (5)S1—C3—C8—C766.0 (5)
C3—O1—C2—C146.7 (7)C6—C7—C8—C353.6 (6)
S1—C1—C2—O139.6 (6)C3—C4—C9—C100.6 (10)
C2—O1—C3—C491.7 (6)C5—C4—C9—C10174.3 (6)
C2—O1—C3—C8146.4 (5)C4—C5—C11—C1269.2 (6)
C2—O1—C3—S128.8 (5)C6—C5—C11—C12165.9 (5)
C1—S1—C3—O14.2 (4)C13—O2—C12—C11178.9 (4)
C1—S1—C3—C4119.9 (4)C5—C11—C12—O2176.4 (4)
C1—S1—C3—C8118.4 (4)C12—O2—C13—O32.8 (7)
O1—C3—C4—C95.5 (7)C12—O2—C13—C14176.6 (4)
C8—C3—C4—C9114.4 (6)O3—C13—C14—C1511.5 (8)
S1—C3—C4—C9123.4 (5)O2—C13—C14—C15167.9 (5)
O1—C3—C4—C5179.9 (4)O3—C13—C14—C19169.8 (6)
C8—C3—C4—C560.0 (5)O2—C13—C14—C1910.8 (7)
S1—C3—C4—C562.2 (4)C19—C14—C15—C162.3 (8)
C9—C4—C5—C1112.9 (7)C13—C14—C15—C16178.8 (5)
C3—C4—C5—C11172.6 (4)C14—C15—C16—C171.2 (8)
C9—C4—C5—C6113.6 (5)C15—C16—C17—C181.0 (9)
C3—C4—C5—C661.0 (5)C15—C16—C17—Br1179.3 (4)
C4—C5—C6—C758.7 (6)C16—C17—C18—C192.0 (9)
C11—C5—C6—C7172.2 (5)Br1—C17—C18—C19178.4 (4)
C5—C6—C7—C855.4 (6)C17—C18—C19—C140.7 (9)
O1—C3—C8—C7179.3 (4)C15—C14—C19—C181.4 (8)
C4—C3—C8—C755.4 (6)C13—C14—C19—C18179.9 (5)

Experimental details

(III)(VI)
Crystal data
Chemical formulaC19H24O3SC19H23BrO3S
Mr332.44411.34
Crystal system, space groupOrthorhombic, Pna21Monoclinic, P21/n
Temperature (K)170293
a, b, c (Å)10.369 (2), 20.791 (3), 8.071 (3)7.243 (2), 11.541 (1), 22.180 (5)
α, β, γ (°)90, 90, 9090, 94.09 (2), 90
V3)1740.0 (8)1849.3 (7)
Z44
Radiation typeMo KαCu Kα
µ (mm1)0.204.20
Crystal size (mm)0.52 × 0.48 × 0.140.30 × 0.16 × 0.10
Data collection
DiffractometerRigaku AFC-6S
diffractometer
Enraf-Nonius CAD4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ-scan (3 reflections; North et al., 1968)
Empirical (using intensity measurements)
via ψ-scan (3 reflections; North et al., 1968)
Tmin, Tmax0.90, 0.970.37, 0.68
No. of measured, independent and
observed [I > 2σ(I)] reflections
2150, 2150, 1147 3651, 3372, 2207
Rint0.000.03
(sin θ/λ)max1)0.6500.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.140, 1.01 0.054, 0.164, 1.04
No. of reflections21503372
No. of parameters219217
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.280.43, 0.83
Absolute structure(Flack, 1983)?
Absolute structure parameter0.05 (18)?

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), CAD-4 Software (Enraf-Nonius, 1989), MSC/AFC Diffractometer Control Software, CAD-4 Software, TEXSAN (Molecular Structure Corporation, 1994), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 1997), TEXSAN, SHELXL97.

Selected geometric parameters (Å, º) for (III) top
S1—C1*1.806 (14)O1—C21.442 (7)
S1—C11.816 (11)O2—C171.335 (6)
S1—C31.880 (5)O2—C181.462 (6)
O1—C31.421 (6)O3—C171.191 (7)
C1*—S1—C386.8 (5)C3—O1—C2112.1 (4)
C1—S1—C393.1 (4)C17—O2—C18116.7 (4)
Selected geometric parameters (Å, º) for (VI) top
Br1—C171.878 (5)O1—C31.423 (6)
S1—C11.798 (6)O2—C131.325 (6)
S1—C31.876 (5)O2—C121.434 (5)
O1—C21.418 (7)O3—C131.201 (6)
C1—S1—C392.6 (3)C13—O2—C12116.3 (4)
C2—O1—C3111.6 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds