Download citation
Download citation
link to html
The title compound, [NiZnBr2(C3H7NO)2(C17H16N2O2)], is a heterodinuclear nickel complex. The Ni atom has an irregular octahedral environment involving two O and two N atoms from the bis­(salicyl­idene)-1,3-propane­diaminate ligand in the equatorial plane, and two O atoms from the di­methyl­form­amide groups. The Zn—O—Ni, O—Zn—O, Ni—O—Zn and O—Ni—O angles in the bridged plane are 100.1 (2), 79.9 (2), 100.4 (2) and 78.89 (17)°, respectively. The Ni...Zn distance is 3.0738 (19) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100014487/da1133sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100014487/da1133Isup2.hkl
Contains datablock I

CCDC reference: 158233

Comment top

N,N'-bis(salicylidene)-1,3-propanediamine is quite an interesting ligand, and has appeared in the literature of coordination chemistry for 50 years. The complexes formed between this ligand and first row transition metals tend toward µ-bridging in nonaqueous media with Lewis acids. Consequently di-, tri- and even polynuclear complexes are formed.

At present, the magnetic properties of homo- and heteropolynuclear compounds are not clearly understood, but these properties are currently under investigation (Meenakumari et al., 1993; Tuna et al., 1999).

Nickel often exhibits interesting magnetic properties, and Zn has biological importance and is an essential element for living beings. In this study, ZnBr2 was added to the square-planar complex of N,N'-bis-(salicylidene)-1,3-propanediamine and nickel(II) (Drew et al., 1985) to form a heterodinuclear complex. In a previous study, we prepared a similar Ni—Zn complex via the reaction of N,N'-bis(salicylidene)-1,3-propanediaminato nickel(II) as a Lewis acid with 3,5-dimethylpyridine and ZnI2, and the resulting molecular structure was reported (Arıcı et al., 1999). This previous dinuclear complex included two 3,5-dimethylpyridine molecules coordinated to the nickel(II) at the axial position to complete the octahedral coordination. The present structure, (I), is very similar to the aforesaid complex, except that no pyridine derivatives are added and the six-coordination of NiII is completed by dimethylformamide solvent molecules. \sch

As seen in Fig.1, the coordination environments of the metals are common ones, i.e. octahedral for NiII and tetrahedral for ZnII, even though the NiII starting material was a square-planar complex (Sogo et al., 1988; Greenwood et al., 1994). The transformation is aided by the Lewis basicity of the ZnII bromide, such that electron density is drawn away from the phenolic O atoms. The reduced electron density at the NiII center thus promotes axial coordination of solvent molecules such as 3,5-dimethylpyridine in the previous case or the DMF solvent in the present one. In each case the structure includes one octahedron and one tetrahedron which share one edge.

The distances from Ni to atoms N1 and N2 are essentially the same as those in the 3,5-dimethylpyridine complex (within 1σ), but the Ni–O1 and Ni–O2 distances [2.016 (5) and 2.010 (5) Å] are significantly shorter than the corresponding distances in the 3,5-dimethylpyridine complex [2.039 (3) and 2.030 (3) Å], probably due to the difference in the halide bonded to Zn. The coordination around the nickel and zinc atoms are quite distorted from ideal octahedral and ideal tetrahedral geometries due to the constraints imposed by the chelating ligands. The Ni—O(axial) distances are 2.128 (5) and 2.137 (5) Å. The distances between the two metals is 3.0738 (19) Å, which is shorter in comparison to some similar complexes (Ercan et al., 1998).

The complex is stable up to 423 K (the approximate boiling point of N,N-dimethylformamide). Thermogravimetric analysis results indicate a loss of dimethylformamide at this temperature, followed by irregular decomposition with increasing temperature.

The average Ni—O, Ni—N, and Zn—Br bond lengths are 2.07 (3), 2.023 (4) and 2.35 (1) Å, respectively, which are in agreement with values reported previously for NiII complexes (Ercan et al., 1998). Atom Ni is 0.0188 (3) Å out of the least-squares plane defined by O1, O2, N1, and N2. The dihedral angle between the planes of the two chelating moieties (O2, C1, C6, C7, N1 and O1, C17, C12, C11, N2) is 3.2 (3)°. Atom C20 is disordered; the atom with suffix A has occupancy 0.41 (8).

All the chelate rings around Ni, except for one, are planar. The Ni—N1—C8—C9—C10—N2 ring is in a half-chair conformation. The Ni—O1—Zn—O2 ring is planar within 0.05 Å, as it is in similar complexes.

Experimental top

To a solution of N,N'-bis-salicylidene-1,3-propanediamine (0.840 g, 3 mmol) in hot ethanol (50 ml), ammonia solution (10 ml) was added and the mixture was heated to boiling. A solution of NiBr2·6H2O (0.715 g, 3 mmol) in hot water (20 ml) was added, and the resulting mixture was left to stand in air. After 2 h, the light blue Ni complex was filtered, and dried at 423 K for 3 h. This complex (0.339 g, 1 mmol) was dissolved in hot DMF (10 mmol) and dioxane (30 mmol). Dropwise addition of ZnBr2 (0.225 g, 1 mmol) in hot methanol (10 ml) was added. The resulting mixture was set aside for 3 d and the light blue crystals which formed were filtered off and dried in air.

Refinement top

All non-H atoms were refined with anisotropic displacement parameters. H atoms bonded to C atoms were placed geometrically from their parent atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON99 (Spek, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. PLATON99 (Spek, 1999) drawing of the asymmetric unit of the title compound. The disordered C20 atom with suffix A has occupancy of 0.41 (8) and that with suffix B has occupancy of 0.59 (8). The displacement ellipsoids are drawn at the 50% probability level.
(I) top
Crystal data top
[NiZnBr2(C3H7NO)2(C17H16N2O2)]Z = 4
Mr = 710.39Dx = 1.698 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 25 reflections
a = 10.518 (3) Åθ = 2.8–12.7°
b = 15.180 (8) ŵ = 4.45 mm1
c = 17.618 (6) ÅT = 295 K
β = 98.85 (2)°Prism, light blue
V = 2779.5 (19) Å30.45 × 0.35 × 0.18 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.000
ω/2θ scansθmax = 27.5°
Absorption correction: ψ scan
empirical (using intensity measurements) via ψ scans (Fair, 1990)
h = 1313
Tmin = 0.138, Tmax = 0.459k = 2019
3265 measured reflectionsl = 2322
3265 independent reflections3 standard reflections every 120 min
2965 reflections with I > 2σ(I) intensity decay: 1.8%
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039Calculated w = 1/[σ2(Fo2) + (0.0884P)2 + 1.4211P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.108(Δ/σ)max = 0.003
S = 1.03Δρmax = 0.67 e Å3
3265 reflectionsΔρmin = 0.69 e Å3
329 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0026 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.022 (15)
Hydrogen site location: inferred from neighbouring sites
Crystal data top
[NiZnBr2(C3H7NO)2(C17H16N2O2)]V = 2779.5 (19) Å3
Mr = 710.39Z = 4
Monoclinic, CcMo Kα radiation
a = 10.518 (3) ŵ = 4.45 mm1
b = 15.180 (8) ÅT = 295 K
c = 17.618 (6) Å0.45 × 0.35 × 0.18 mm
β = 98.85 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2965 reflections with I > 2σ(I)
Absorption correction: ψ scan
empirical (using intensity measurements) via ψ scans (Fair, 1990)
Rint = 0.000
Tmin = 0.138, Tmax = 0.4593 standard reflections every 120 min
3265 measured reflections intensity decay: 1.8%
3265 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.108Δρmax = 0.67 e Å3
S = 1.03Δρmin = 0.69 e Å3
3265 reflectionsAbsolute structure: Flack (1983)
329 parametersAbsolute structure parameter: 0.022 (15)
2 restraints
Special details top

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni0.64193 (7)0.91396 (5)0.77186 (4)0.0396 (2)
Zn0.79252 (7)0.81928 (5)0.65962 (4)0.0446 (2)
Br10.91548 (10)0.90540 (7)0.58790 (5)0.0800 (3)
Br20.79871 (9)0.66467 (5)0.64511 (5)0.0710 (3)
O10.6151 (4)0.8620 (3)0.6653 (3)0.0457 (10)
O20.8143 (5)0.8580 (3)0.7688 (2)0.0454 (10)
O30.7040 (6)1.0340 (3)0.7270 (3)0.0574 (12)
O40.5741 (5)0.7978 (3)0.8213 (3)0.0544 (11)
N10.7040 (7)0.9582 (4)0.8796 (3)0.0531 (14)
N20.4576 (6)0.9561 (4)0.7579 (4)0.0534 (13)
N30.6839 (7)1.1356 (4)0.6319 (4)0.061 (2)
N40.5303 (6)0.6523 (4)0.8212 (4)0.0503 (13)
C10.9189 (7)0.8569 (4)0.8206 (4)0.0462 (14)
C21.0312 (9)0.8186 (6)0.8040 (6)0.069 (2)
C31.1428 (11)0.8190 (8)0.8592 (7)0.091 (3)
C41.1453 (11)0.8578 (9)0.9282 (6)0.090 (3)
C51.0365 (10)0.8951 (7)0.9466 (5)0.073 (2)
C60.9197 (8)0.8969 (5)0.8930 (4)0.053 (2)
C70.8141 (8)0.9425 (5)0.9179 (4)0.056 (2)
C80.6115 (10)1.0097 (6)0.9166 (6)0.072 (2)
C90.4781 (10)0.9760 (6)0.8999 (5)0.072 (2)
C100.4093 (10)1.0030 (7)0.8205 (5)0.075 (2)
C110.3761 (8)0.9422 (5)0.6977 (5)0.061 (2)
C120.3945 (7)0.9007 (4)0.6267 (4)0.051 (2)
C130.2887 (9)0.8975 (6)0.5682 (7)0.073 (3)
C140.2951 (10)0.8574 (6)0.4976 (6)0.075 (3)
C150.4067 (11)0.8192 (6)0.4865 (5)0.072 (3)
C160.5134 (9)0.8201 (4)0.5412 (4)0.055 (2)
C170.5101 (7)0.8610 (4)0.6121 (4)0.0441 (14)
C180.5848 (7)0.7228 (5)0.7965 (4)0.051 (2)
C190.6484 (7)1.0667 (5)0.6678 (4)0.054 (2)
C20A0.8243 (3)1.1555 (4)0.6412 (3)0.076 (13)0.41 (8)
C20B0.7722 (7)1.1948 (3)0.6711 (3)0.130 (2)0.59 (8)
C210.6097 (11)1.1721 (6)0.5622 (6)0.077 (2)*
C220.5507 (11)0.5661 (5)0.7894 (7)0.081 (3)*
C230.4509 (10)0.6556 (6)0.8796 (6)0.073 (2)
H21.03260.79260.75630.0830*
H31.21690.79180.84790.1090*
H41.22120.85910.96310.1070*
H51.03810.92000.99500.0870*
H70.82790.96320.96820.0670*
H110.29290.96170.69990.0730*
H130.21150.92280.57660.0880*
H140.22410.85700.45900.0900*
H150.41090.79130.44000.0860*
H160.58880.79340.53140.0660*
H180.63470.71540.75780.0610*
H190.57231.03950.64590.0640*
H810.61271.07040.89930.0860*
H820.63891.00930.97170.0860*
H910.42970.99780.93860.0860*
H920.47980.91220.90320.0860*
H1010.31800.99150.81750.0900*
H1020.42031.06590.81390.0900*
H2010.85251.15380.59190.0910*0.41 (8)
H2020.86111.11490.67500.0910*0.41 (8)
H2030.83101.21510.66310.0910*0.41 (8)
H2040.72871.24830.68070.1550*0.59 (8)
H2050.83791.20750.64050.1550*0.59 (8)
H2060.81061.16920.71900.1550*0.59 (8)
H2110.65381.22240.54590.0920*
H2120.52631.18960.57240.0920*
H2130.60021.12830.52240.0920*
H2210.50440.52260.81370.0970*
H2220.64090.55240.79840.0970*
H2230.52040.56640.73520.0970*
H2310.42120.59740.88890.0880*
H2320.37840.69320.86340.0880*
H2330.49950.67850.92600.0880*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0392 (4)0.0380 (3)0.0424 (4)0.0006 (3)0.0091 (3)0.0014 (3)
Zn0.0451 (4)0.0500 (4)0.0394 (3)0.0040 (3)0.0090 (3)0.0100 (3)
Br10.0813 (7)0.0903 (6)0.0766 (5)0.0343 (5)0.0382 (5)0.0150 (5)
Br20.0907 (7)0.0521 (4)0.0723 (5)0.0017 (3)0.0195 (5)0.0196 (4)
O10.038 (2)0.054 (2)0.045 (2)0.001 (2)0.002 (2)0.007 (2)
O20.040 (2)0.059 (2)0.036 (2)0.000 (2)0.005 (2)0.006 (2)
O30.066 (3)0.045 (2)0.060 (3)0.011 (2)0.007 (3)0.006 (2)
O40.061 (3)0.044 (2)0.060 (3)0.002 (2)0.016 (2)0.008 (2)
N10.065 (4)0.045 (3)0.053 (3)0.005 (2)0.021 (3)0.009 (3)
N20.039 (3)0.055 (3)0.069 (4)0.004 (3)0.019 (3)0.008 (3)
N30.066 (4)0.047 (3)0.068 (4)0.018 (3)0.000 (3)0.006 (3)
N40.040 (3)0.043 (3)0.068 (4)0.007 (2)0.005 (3)0.003 (2)
C10.043 (4)0.048 (3)0.046 (3)0.014 (3)0.002 (3)0.001 (3)
C20.049 (5)0.088 (6)0.067 (5)0.010 (4)0.001 (4)0.019 (4)
C30.052 (5)0.117 (9)0.096 (8)0.014 (6)0.014 (6)0.016 (5)
C40.056 (6)0.138 (9)0.064 (6)0.022 (6)0.024 (5)0.012 (6)
C50.066 (6)0.091 (6)0.055 (4)0.010 (4)0.011 (4)0.022 (5)
C60.050 (4)0.056 (4)0.050 (4)0.008 (3)0.000 (3)0.012 (3)
C70.063 (5)0.055 (4)0.046 (3)0.003 (3)0.002 (3)0.018 (4)
C80.082 (6)0.065 (5)0.072 (5)0.025 (4)0.023 (5)0.009 (5)
C90.082 (6)0.071 (5)0.071 (5)0.010 (4)0.040 (5)0.003 (5)
C100.066 (5)0.088 (6)0.077 (5)0.011 (4)0.030 (4)0.025 (5)
C110.040 (4)0.048 (3)0.096 (6)0.016 (4)0.016 (4)0.007 (3)
C120.042 (4)0.045 (3)0.063 (4)0.010 (3)0.002 (3)0.005 (3)
C130.044 (4)0.067 (4)0.105 (7)0.025 (5)0.002 (5)0.003 (4)
C140.069 (6)0.071 (5)0.073 (5)0.016 (4)0.029 (5)0.019 (5)
C150.088 (7)0.065 (5)0.055 (4)0.001 (3)0.014 (5)0.018 (5)
C160.064 (5)0.049 (3)0.048 (4)0.001 (3)0.008 (4)0.001 (3)
C170.045 (4)0.034 (3)0.051 (3)0.004 (2)0.001 (3)0.008 (3)
C180.048 (4)0.049 (3)0.056 (4)0.013 (3)0.009 (3)0.001 (3)
C190.053 (4)0.049 (3)0.058 (4)0.001 (3)0.007 (3)0.006 (3)
C20A0.062 (16)0.08 (3)0.081 (18)0.034 (18)0.004 (13)0.027 (13)
C20B0.17 (4)0.085 (18)0.11 (2)0.035 (18)0.05 (3)0.06 (2)
C210.077 (6)0.081 (5)0.069 (5)0.021 (4)0.004 (5)0.001 (5)
C220.075 (6)0.045 (4)0.128 (9)0.002 (5)0.030 (6)0.007 (4)
C230.067 (6)0.068 (5)0.088 (6)0.015 (4)0.024 (5)0.010 (4)
Geometric parameters (Å, º) top
Ni—Zn3.0738 (19)C13—C141.40 (2)
Br1—Zn2.3412 (18)C14—C151.350 (2)
Br2—Zn2.3628 (16)C15—C161.362 (12)
Zn—O11.993 (5)C16—C171.400 (11)
Zn—O21.991 (4)C2—H20.9300
Ni—O12.016 (5)C3—H30.9300
Ni—O22.010 (5)C4—H40.9300
Ni—O32.128 (5)C5—H50.9300
Ni—O42.137 (5)C7—H70.9300
Ni—N12.025 (6)C8—H810.9700
Ni—N22.020 (7)C8—H820.9700
O1—C171.334 (9)C9—H910.9700
O2—C11.317 (9)C9—H920.9700
O3—C191.220 (9)C10—H1010.9700
O4—C181.231 (9)C10—H1020.9700
N1—C71.270 (11)C11—H110.9300
N1—C81.476 (12)C13—H130.9300
N2—C101.468 (12)C14—H140.9300
N2—C111.275 (11)C15—H150.9300
N3—C191.306 (10)C16—H160.9300
N3—C211.459 (13)C18—H180.9300
N3—C20A1.49 (3)C19—H190.9300
N3—C20B1.40 (6)C21—H2110.9600
N4—C181.319 (10)C21—H2120.9600
N4—C221.452 (11)C21—H2130.9600
N4—C231.422 (13)C22—H2210.9600
C1—C21.387 (12)C22—H2220.9600
C1—C61.411 (11)C22—H2230.9600
C2—C31.406 (14)C23—H2310.9600
C3—C41.350 (2)C23—H2320.9600
C4—C51.360 (2)C23—H2330.9600
C5—C61.431 (12)C20A—H2010.9600
C6—C71.435 (12)C20A—H2020.9600
C8—C91.480 (14)C20A—H2030.9600
C9—C101.528 (13)C20B—H2040.9600
C11—C121.440 (11)C20B—H2050.9600
C12—C131.396 (13)C20B—H2060.9600
C12—C171.415 (11)
Br1—Zn—Br2118.01 (5)C1—C2—H2120.0
Br1—Zn—O1116.41 (15)C3—C2—H2120.0
Br1—Zn—O2111.45 (15)C2—C3—H3119.2
Br2—Zn—O1111.73 (14)C4—C3—H3119.1
Br2—Zn—O2113.38 (14)C3—C4—H4120.1
O1—Zn—O279.9 (2)C5—C4—H4120.1
O1—Ni—O278.89 (17)C4—C5—H5119.4
O1—Ni—O389.78 (19)C6—C5—H5119.3
O1—Ni—O492.81 (19)N1—C7—H7116.0
O1—Ni—N1169.0 (2)C6—C7—H7116.1
O1—Ni—N290.9 (2)N1—C8—H81108.8
O2—Ni—O391.3 (2)N1—C8—H82108.9
O2—Ni—O491.22 (19)C9—C8—H81108.9
O2—Ni—N190.2 (2)C9—C8—H82108.9
O2—Ni—N2169.4 (2)H81—C8—H82107.7
O3—Ni—O4176.7 (2)C8—C9—H91109.1
O3—Ni—N189.5 (2)C8—C9—H92109.0
O3—Ni—N291.6 (2)C10—C9—H91109.0
O4—Ni—N188.4 (2)C10—C9—H92108.9
O4—Ni—N286.4 (2)H91—C9—H92107.8
N1—Ni—N2100.0 (3)N2—C10—H101109.0
Zn—O1—Ni100.1 (2)N2—C10—H102109.0
Zn—O1—C17129.9 (4)C9—C10—H101109.1
Ni—O1—C17129.9 (4)C9—C10—H102109.0
Zn—O2—Ni100.4 (2)H101—C10—H102107.8
Zn—O2—C1128.7 (4)N2—C11—H11115.4
Ni—O2—C1130.3 (4)C12—C11—H11115.4
Ni—O3—C19122.1 (5)C12—C13—H13119.0
Ni—O4—C18124.3 (5)C14—C13—H13119.0
Ni—N1—C7124.9 (5)C13—C14—H14120.8
Ni—N1—C8116.8 (6)C15—C14—H14120.6
C7—N1—C8118.3 (7)C14—C15—H15118.9
Ni—N2—C10119.9 (6)C16—C15—H15118.8
Ni—N2—C11124.0 (6)C15—C16—H16119.8
C10—N2—C11116.1 (7)C17—C16—H16119.8
C19—N3—C21123.8 (7)O4—C18—H18117.7
C19—N3—C20B120.0 (2)N4—C18—H18117.9
C19—N3—C20A118.0 (2)O3—C19—H19116.3
C21—N3—C20B113.0 (2)N3—C19—H19116.5
C21—N3—C20A114.0 (2)N3—C21—H211109.5
C18—N4—C22120.4 (7)N3—C21—H212109.5
C18—N4—C23122.9 (7)N3—C21—H213109.5
C22—N4—C23116.7 (7)H211—C21—H212109.5
O2—C1—C2120.4 (7)H211—C21—H213109.5
O2—C1—C6120.6 (7)H212—C21—H213109.5
C2—C1—C6118.9 (7)N4—C22—H221109.4
C1—C2—C3120.0 (9)N4—C22—H222109.4
C2—C3—C4121.7 (11)N4—C22—H223109.5
C3—C4—C5119.8 (10)H221—C22—H222109.5
C4—C5—C6121.3 (8)H221—C22—H223109.5
C1—C6—C5118.3 (8)H222—C22—H223109.5
C1—C6—C7125.9 (7)N4—C23—H231109.5
C5—C6—C7115.8 (7)N4—C23—H232109.5
N1—C7—C6127.9 (7)N4—C23—H233109.5
N1—C8—C9113.5 (8)H231—C23—H232109.5
C8—C9—C10113.0 (8)H231—C23—H233109.4
N2—C10—C9112.8 (8)H232—C23—H233109.4
N2—C11—C12129.2 (8)N3—C20A—H202109.0
C11—C12—C13117.3 (7)N3—C20A—H203110.0
C11—C12—C17125.3 (7)H201—C20A—H202108.0
C13—C12—C17117.4 (7)H201—C20A—H203110.0
C12—C13—C14122.1 (9)H202—C20A—H203110.0
C13—C14—C15118.6 (9)N3—C20A—H201110.0
C14—C15—C16122.2 (9)H205—C20B—H206109.0
C15—C16—C17120.3 (8)N3—C20B—H204110.0
O1—C17—C12120.6 (6)N3—C20B—H205110.0
O1—C17—C16120.0 (7)N3—C20B—H206109.0
C12—C17—C16119.4 (7)H204—C20B—H205110.0
O4—C18—N4124.4 (7)H204—C20B—H206109.0
O3—C19—N3127.2 (8)
Br1—Zn—O1—Ni102.85 (17)O4—Ni—N1—C889.1 (6)
Br2—Zn—O1—Ni117.48 (15)O1—Ni—N2—C10179.4 (7)
O2—Zn—O1—Ni6.20 (19)O3—Ni—N2—C1090.8 (6)
Br1—Zn—O1—C1773.8 (5)O4—Ni—N2—C1086.7 (6)
Br2—Zn—O1—C1765.9 (5)O3—Ni—N2—C1191.6 (6)
O2—Zn—O1—C17177.2 (5)O4—Ni—N2—C1191.0 (6)
O1—Zn—O2—Ni6.22 (19)N1—Ni—N2—C11178.7 (6)
Br1—Zn—O2—Ni108.33 (17)Zn—O1—C17—C12175.6 (4)
Br2—Zn—O2—Ni115.66 (15)Ni—O1—C17—C16179.6 (5)
O1—Zn—O2—C1178.4 (5)Zn—O2—C1—C25.7 (9)
Br1—Zn—O2—C163.9 (5)Ni—O2—C1—C2175.7 (6)
Br2—Zn—O2—C172.1 (5)Zn—O2—C1—C6172.4 (5)
O2—Ni—O1—Zn6.16 (19)Ni—O3—C19—N3173.9 (6)
O3—Ni—O1—Zn85.2 (2)Ni—O4—C18—N4171.8 (5)
O4—Ni—O1—Zn96.8 (2)Ni—N1—C8—C938.6 (9)
N2—Ni—O1—Zn176.7 (2)C7—N1—C8—C9139.2 (8)
O2—Ni—O1—C17177.2 (5)C8—N1—C7—C6177.7 (8)
O3—Ni—O1—C1791.4 (5)Ni—N1—C7—C64.7 (12)
O4—Ni—O1—C1786.5 (5)Ni—N2—C10—C928.8 (10)
O1—Ni—O2—Zn6.17 (19)C10—N2—C11—C12178.1 (8)
O3—Ni—O2—Zn83.4 (2)C11—N2—C10—C9149.0 (8)
O4—Ni—O2—Zn98.8 (2)Ni—N2—C11—C124.2 (12)
N1—Ni—O2—Zn172.8 (2)C20B—N3—C19—O319 (3)
O1—Ni—O2—C1178.2 (6)C21—N3—C19—O3178.2 (8)
O3—Ni—O2—C188.7 (5)C22—N4—C18—O4178.7 (8)
O4—Ni—O2—C189.2 (5)O2—C1—C6—C5178.9 (7)
O1—Ni—O3—C1943.4 (6)O2—C1—C2—C3179.0 (8)
O2—Ni—O3—C19122.3 (6)C2—C1—C6—C7177.1 (8)
N1—Ni—O3—C19147.5 (6)C4—C5—C6—C7176.6 (10)
N2—Ni—O3—C1947.5 (6)C5—C6—C7—N1175.1 (8)
O1—Ni—O4—C1830.2 (6)N1—C8—C9—C1078.7 (10)
O2—Ni—O4—C1848.7 (6)C8—C9—C10—N272.1 (10)
N1—Ni—O4—C18138.9 (6)N2—C11—C12—C174.5 (13)
N2—Ni—O4—C18121.0 (6)N2—C11—C12—C13177.2 (8)
O3—Ni—N1—C793.9 (6)C11—C12—C17—C16177.7 (7)
O4—Ni—N1—C788.6 (6)C13—C12—C17—O1179.7 (6)
N2—Ni—N1—C7174.6 (6)C11—C12—C13—C14178.8 (8)
O2—Ni—N1—C8179.7 (6)C15—C16—C17—O1179.7 (7)
O3—Ni—N1—C888.4 (6)

Experimental details

Crystal data
Chemical formula[NiZnBr2(C3H7NO)2(C17H16N2O2)]
Mr710.39
Crystal system, space groupMonoclinic, Cc
Temperature (K)295
a, b, c (Å)10.518 (3), 15.180 (8), 17.618 (6)
β (°) 98.85 (2)
V3)2779.5 (19)
Z4
Radiation typeMo Kα
µ (mm1)4.45
Crystal size (mm)0.45 × 0.35 × 0.18
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
empirical (using intensity measurements) via ψ scans (Fair, 1990)
Tmin, Tmax0.138, 0.459
No. of measured, independent and
observed [I > 2σ(I)] reflections
3265, 3265, 2965
Rint0.000
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.03
No. of reflections3265
No. of parameters329
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.69
Absolute structureFlack (1983)
Absolute structure parameter0.022 (15)

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1993), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON99 (Spek, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
Ni—Zn3.0738 (19)Ni—O32.128 (5)
Br1—Zn2.3412 (18)Ni—O42.137 (5)
Br2—Zn2.3628 (16)Ni—N12.025 (6)
Zn—O11.993 (5)Ni—N22.020 (7)
Zn—O21.991 (4)N3—C20A1.49 (3)
Ni—O12.016 (5)N3—C20B1.40 (6)
Ni—O22.010 (5)
Br1—Zn—Br2118.01 (5)Ni—O3—C19122.1 (5)
Br1—Zn—O1116.41 (15)Ni—O4—C18124.3 (5)
Br1—Zn—O2111.45 (15)Ni—N1—C7124.9 (5)
Br2—Zn—O1111.73 (14)Ni—N1—C8116.8 (6)
Br2—Zn—O2113.38 (14)C7—N1—C8118.3 (7)
O1—Zn—O279.9 (2)Ni—N2—C10119.9 (6)
O1—Ni—O278.89 (17)Ni—N2—C11124.0 (6)
O1—Ni—O389.78 (19)C10—N2—C11116.1 (7)
O1—Ni—O492.81 (19)C19—N3—C21123.8 (7)
O1—Ni—N1169.0 (2)C19—N3—C20B120.0 (2)
O1—Ni—N290.9 (2)C19—N3—C20A118.0 (2)
O2—Ni—O391.3 (2)C21—N3—C20B113.0 (2)
O2—Ni—O491.22 (19)C21—N3—C20A114.0 (2)
O2—Ni—N190.2 (2)C18—N4—C22120.4 (7)
O2—Ni—N2169.4 (2)C18—N4—C23122.9 (7)
O3—Ni—O4176.7 (2)C22—N4—C23116.7 (7)
O3—Ni—N189.5 (2)O2—C1—C2120.4 (7)
O3—Ni—N291.6 (2)O2—C1—C6120.6 (7)
O4—Ni—N188.4 (2)N1—C7—C6127.9 (7)
O4—Ni—N286.4 (2)N1—C8—C9113.5 (8)
N1—Ni—N2100.0 (3)N2—C10—C9112.8 (8)
Zn—O1—Ni100.1 (2)N2—C11—C12129.2 (8)
Zn—O1—C17129.9 (4)O1—C17—C12120.6 (6)
Ni—O1—C17129.9 (4)O1—C17—C16120.0 (7)
Zn—O2—Ni100.4 (2)O4—C18—N4124.4 (7)
Zn—O2—C1128.7 (4)O3—C19—N3127.2 (8)
Ni—O2—C1130.3 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds