Download citation
Download citation
link to html
The crystal structure of 21α-fluoro-7-norvouacapane-17β,21α-lactone, C20H25FO3, a new synthetic derivative of the diterpenoid 6α,7β-di­hydroxy­vouacapan-17β-oic acid isolated from Pterodon polygalaeflorus Benth fruits, is described.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100004790/da1124sup1.cif
Contains datablocks global, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004790/da1124IIIsup2.hkl
Contains datablock III

CCDC reference: 147660

Comment top

As part of our investigation of the structural requirements for the biological activities presented by derivatives of the diterpenoid 6α,7β-dihydroxyvouacapan-17β-oic acid, (I), isolated from Pterodon polygalaeflorus Benth (Rubinger et al., 1991), we have described recently an attempt to substitute the hydroxyl groups of compounds (I) and 6α-hydroxyvouacapane-7β,17β-lactone, (II), with fluorine atoms (Demuner et al., 1998). In both cases the fluorine derivative 21α-fluoro-7-norvouacapane-17β,21α-lactone, (III), has been obtained. The introduction of fluorine atoms into new molecules is a common strategy for the development of new drugs (Wilkinson, 1992). Our purpose in this case was to produce more lipophilic analogues of compounds (I) and (II) that would still be able to make hydrogen bonds at position eight and would be less sterically hindered at that position. \sch

The structure of compound (III) was proposed based on spectroscopic data. The EIMS showed a M+ ion peak at m/z 332.1784, corresponding to the molecular formula C20H25O3F. In the infrared spectrum, no absorption around 3300 cm−1 was observed, indicating that no hydroxyl group was present in the molecule. Further evidence for the presence of fluorine in this molecule comes from the 19F-NMR spectrum that showed only one double doublet (JF,H21 = 54 Hz and JF,H6 = 33 Hz) at δ −128.1. We now present the X-ray study that confirms the proposed structure of this rearranged diterpenoid. This was important as the product obtained has resulted from an unexpected rearrangment. An ORTEPIII (Burnett & Johnson, 1996) drawing of the title compound is shown in Figure 1.

A conformation analysis (Cremer & Pople, 1975; Iulek & Zukerman-Schpector, 1997), of (III) shows that the A [q2 = 0.040 (3) Å, q3 = 0.556 (3) Å, Q = 0.557 (3) Å, θ = 4.1 (3)°, ϕ = 340 (4)°] and C [q2 = 0.418 (3) Å, q3 = 0.365 (3) Å, Q = 0.555 (3) Å, θ = 48.8 (3)°, ϕ = 15.7 (4)°] rings, respectively, adopt chair and distorted half chair conformations, like its precursors (I) (Ruggiero et al., 1997) and (II) (Abrahão-Junior et al., 1997). The B [q2 = 0.501 (3) Å, ϕ = 323.6 (3)°] and D [q2 = 0.685 (3) Å, q3 = −0.049 (3) Å, Q = 0.687 (3) Å, θ = 94.1 (2)°, ϕ = 301.2 (2)°] rings have envelope and boat conformations, respectively.

The junctions of the rings AB, BC and CD are trans and the junction BD is cis. Some bond distances and angles of the norvouacapan fused rings are shown in Table 1. In the crystal packing there is a short contact: F···C1i = 3.525 (3) Å, F···H11i = 2.808, F···H11i—C1i = 131° (i = 2 − x, 1/2 + y, 1 − z).

Experimental top

The title compound has been prepared from both compounds (I) and (II) under the same conditions. Its synthesis and spectroscopic characterization has been reported recently (Demuner et al., 1998). Suitable single crystals of the title compound were obtained by slow evaporation of a THF/ethanol (1:10) solution. The absolute structure could not be determined.

Refinement top

H atoms were positioned geometrically and a riding model was used during the refinement process, with Uiso set to 1.5 (for methyl-H atoms) or 1.2 (for the remaining) times the value of Ueq of the atom to which they are attached.

Computing details top

Data collection: CAD-4 Software (Enraf Nonius, 1989); cell refinement: CAD-4 Software; data reduction: SDP (Fair, 1990); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. An ORTEPIII view (Burnett & Johnson, 1996) of the title compound showing 40% probability displacement ellipsoids.
21α-fluoro-7-norvouacapane-17β,21α-lactone top
Crystal data top
C20H25FO3F(000) = 356
Mr = 332.40Dx = 1.309 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.440 (1) ÅCell parameters from 25 reflections
b = 9.366 (1) Åθ = 10.3–18.3°
c = 9.741 (1) ŵ = 0.09 mm1
β = 101.69 (1)°T = 293 K
V = 843.4 (2) Å3Plate, colourless
Z = 20.45 × 0.40 × 0.08 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1571 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 26.3°, θmin = 2.7°
ω/2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 110
Tmin = 0.961, Tmax = 0.993l = 1211
1920 measured reflections3 standard reflections every 120 min
1813 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.097Calculated w = 1/[σ2(Fo2) + (0.0491P)2 + 0.1231P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1813 reflectionsΔρmax = 0.14 e Å3
218 parametersΔρmin = 0.19 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.6 (12)
Crystal data top
C20H25FO3V = 843.4 (2) Å3
Mr = 332.40Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.440 (1) ŵ = 0.09 mm1
b = 9.366 (1) ÅT = 293 K
c = 9.741 (1) Å0.45 × 0.40 × 0.08 mm
β = 101.69 (1)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1571 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.031
Tmin = 0.961, Tmax = 0.9933 standard reflections every 120 min
1920 measured reflections intensity decay: 1%
1813 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.097Δρmax = 0.14 e Å3
S = 1.11Δρmin = 0.19 e Å3
1813 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
218 parametersAbsolute structure parameter: 0.6 (12)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F0.90740 (17)0.2733 (2)0.65624 (19)0.0620 (5)
O10.8964 (2)0.3908 (2)0.7621 (2)0.0574 (6)
O20.7468 (2)0.0673 (3)0.9568 (2)0.0634 (6)
O30.8758 (2)0.2340 (2)0.8779 (2)0.0552 (5)
C11.3326 (3)0.0233 (3)0.5930 (3)0.0474 (6)
H111.26160.01670.50600.057*
H121.37280.11900.59980.057*
C21.4535 (3)0.0857 (4)0.5916 (3)0.0546 (7)
H211.52880.07250.67450.066*
H221.49560.06910.51010.066*
C31.3974 (3)0.2385 (3)0.5882 (3)0.0523 (7)
H311.33180.25380.49900.063*
H321.47860.30280.59210.063*
C41.3186 (3)0.2792 (3)0.7064 (3)0.0413 (6)
C51.2049 (3)0.1618 (3)0.7090 (2)0.0336 (5)
H511.13900.16900.61750.040*
C61.1046 (3)0.1656 (3)0.8168 (2)0.0350 (5)
H611.16490.18320.90960.042*
C81.0472 (2)0.0123 (3)0.8146 (2)0.0335 (5)
H811.08310.03000.90710.040*
C91.1124 (3)0.0711 (3)0.7075 (2)0.0357 (5)
H911.05380.04930.61480.043*
C101.2590 (2)0.0040 (3)0.7170 (2)0.0355 (5)
C111.0972 (3)0.2314 (3)0.7314 (3)0.0477 (6)
H1111.10960.28470.64930.057*
H1121.16970.26300.81100.057*
C120.9489 (3)0.2542 (3)0.7589 (3)0.0447 (6)
C130.8498 (3)0.1591 (3)0.7835 (3)0.0409 (6)
C140.8819 (2)0.0014 (3)0.7811 (3)0.0373 (5)
H1410.84660.03360.68550.045*
C150.7268 (3)0.2401 (4)0.8025 (3)0.0485 (7)
H1510.64050.20440.82060.058*
C160.7606 (4)0.3776 (4)0.7893 (3)0.0565 (8)
H1610.69980.45380.79760.068*
C170.8255 (3)0.0949 (3)0.8791 (3)0.0458 (6)
C181.2420 (4)0.4220 (4)0.6681 (4)0.0596 (8)
H1811.31150.49250.65410.089*
H1821.19610.45180.74270.089*
H1831.17030.41120.58340.089*
C191.4264 (3)0.3014 (4)0.8455 (3)0.0549 (7)
H1911.48360.38500.83900.082*
H1921.48860.21970.86460.082*
H1931.37450.31350.91990.082*
C201.3605 (3)0.0374 (3)0.8550 (3)0.0483 (7)
H2011.32280.00080.93250.072*
H2021.45480.00220.85730.072*
H2031.36750.13950.86170.072*
C210.9790 (3)0.2700 (3)0.7957 (3)0.0474 (6)
H2111.01690.36560.82260.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F0.0583 (10)0.0536 (11)0.0704 (10)0.0184 (9)0.0041 (8)0.0180 (9)
O10.0713 (15)0.0360 (12)0.0676 (13)0.0094 (10)0.0203 (11)0.0007 (9)
O20.0562 (12)0.0694 (16)0.0733 (14)0.0052 (11)0.0341 (10)0.0162 (12)
O30.0521 (11)0.0424 (11)0.0768 (14)0.0061 (9)0.0265 (10)0.0139 (10)
C10.0484 (14)0.0462 (16)0.0520 (15)0.0017 (13)0.0205 (11)0.0066 (13)
C20.0578 (17)0.0576 (18)0.0563 (16)0.0043 (15)0.0302 (13)0.0097 (15)
C30.0607 (17)0.0528 (18)0.0484 (15)0.0126 (14)0.0226 (13)0.0025 (13)
C40.0485 (13)0.0370 (14)0.0410 (12)0.0040 (12)0.0150 (10)0.0025 (11)
C50.0371 (12)0.0322 (12)0.0309 (11)0.0015 (10)0.0055 (9)0.0008 (10)
C60.0386 (12)0.0327 (12)0.0334 (11)0.0039 (10)0.0063 (9)0.0001 (10)
C80.0353 (11)0.0332 (12)0.0313 (10)0.0055 (10)0.0049 (9)0.0004 (9)
C90.0381 (12)0.0313 (13)0.0382 (12)0.0055 (10)0.0089 (10)0.0008 (10)
C100.0394 (12)0.0349 (13)0.0332 (11)0.0077 (11)0.0100 (9)0.0010 (10)
C110.0498 (14)0.0315 (14)0.0648 (16)0.0057 (12)0.0186 (12)0.0007 (13)
C120.0536 (15)0.0293 (14)0.0509 (15)0.0039 (11)0.0102 (12)0.0011 (11)
C130.0419 (13)0.0413 (15)0.0383 (13)0.0013 (11)0.0057 (10)0.0019 (11)
C140.0361 (12)0.0362 (14)0.0384 (12)0.0031 (10)0.0048 (9)0.0002 (11)
C150.0479 (14)0.0551 (18)0.0428 (13)0.0101 (13)0.0098 (11)0.0010 (13)
C160.0637 (19)0.056 (2)0.0518 (15)0.0189 (15)0.0167 (14)0.0010 (14)
C170.0353 (12)0.0496 (17)0.0527 (14)0.0060 (12)0.0091 (11)0.0072 (13)
C180.071 (2)0.0365 (16)0.074 (2)0.0020 (15)0.0216 (16)0.0073 (15)
C190.0509 (15)0.061 (2)0.0534 (15)0.0170 (15)0.0117 (12)0.0140 (14)
C200.0361 (12)0.0551 (17)0.0530 (14)0.0100 (12)0.0071 (10)0.0110 (13)
C210.0488 (14)0.0342 (14)0.0605 (16)0.0059 (13)0.0142 (12)0.0015 (13)
Geometric parameters (Å, º) top
F—C211.390 (3)C5—C101.560 (3)
O1—C161.366 (4)C6—C211.518 (3)
O1—C121.375 (3)C6—C81.533 (4)
O2—C171.192 (3)C8—C91.528 (3)
O3—C171.387 (4)C8—C141.533 (3)
O3—C211.421 (3)C9—C111.531 (4)
C1—C101.532 (3)C9—C101.539 (3)
C1—C21.533 (4)C10—C201.535 (3)
C2—C31.524 (5)C11—C121.493 (4)
C3—C41.540 (3)C12—C131.347 (4)
C4—C181.530 (4)C13—C151.430 (4)
C4—C191.536 (4)C13—C141.509 (4)
C4—C51.540 (4)C14—C171.488 (4)
C5—C61.550 (3)C15—C161.338 (5)
C16—O1—C12106.1 (2)C1—C10—C9115.0 (2)
C17—O3—C21120.2 (2)C20—C10—C9109.3 (2)
C10—C1—C2110.6 (2)C1—C10—C5108.4 (2)
C3—C2—C1111.7 (2)C20—C10—C5115.0 (2)
C2—C3—C4115.8 (2)C9—C10—C598.53 (18)
C18—C4—C19107.0 (2)C12—C11—C9106.7 (2)
C18—C4—C3108.1 (2)C13—C12—O1110.2 (2)
C19—C4—C3111.0 (2)C13—C12—C11130.3 (3)
C18—C4—C5109.4 (2)O1—C12—C11119.5 (2)
C19—C4—C5114.9 (2)C12—C13—C15106.4 (3)
C3—C4—C5106.2 (2)C12—C13—C14119.7 (2)
C4—C5—C6121.2 (2)C15—C13—C14133.8 (3)
C4—C5—C10117.0 (2)C17—C14—C13119.0 (2)
C6—C5—C10103.10 (19)C17—C14—C8107.1 (2)
C21—C6—C8109.7 (2)C13—C14—C8106.1 (2)
C21—C6—C5119.4 (2)C16—C15—C13106.4 (3)
C8—C6—C5103.42 (19)C15—C16—O1110.9 (3)
C9—C8—C14110.21 (19)O2—C17—O3117.9 (3)
C9—C8—C6107.32 (19)O2—C17—C14128.7 (3)
C14—C8—C6114.99 (19)O3—C17—C14113.3 (2)
C8—C9—C11109.5 (2)F—C21—O3107.6 (2)
C8—C9—C10101.96 (19)F—C21—C6111.0 (2)
C11—C9—C10123.4 (2)O3—C21—C6112.1 (2)
C1—C10—C20110.3 (2)
C10—C1—C2—C356.4 (3)C4—C5—C10—C9176.55 (19)
C1—C2—C3—C455.4 (3)C6—C5—C10—C947.7 (2)
C2—C3—C4—C18167.6 (3)C8—C9—C11—C1242.3 (3)
C2—C3—C4—C1975.3 (3)C10—C9—C11—C12162.1 (2)
C2—C3—C4—C550.3 (3)C16—O1—C12—C130.1 (3)
C18—C4—C5—C664.3 (3)C16—O1—C12—C11179.9 (3)
C19—C4—C5—C656.1 (3)C9—C11—C12—C1310.6 (4)
C3—C4—C5—C6179.3 (2)C9—C11—C12—O1169.7 (2)
C18—C4—C5—C10168.3 (2)O1—C12—C13—C150.4 (3)
C19—C4—C5—C1071.3 (3)C11—C12—C13—C15179.9 (3)
C3—C4—C5—C1051.9 (3)O1—C12—C13—C14178.3 (2)
C4—C5—C6—C2175.3 (3)C11—C12—C13—C142.0 (4)
C10—C5—C6—C21151.3 (2)C12—C13—C14—C17145.5 (3)
C4—C5—C6—C8162.5 (2)C15—C13—C14—C1737.2 (4)
C10—C5—C6—C829.1 (2)C12—C13—C14—C824.8 (3)
C21—C6—C8—C9127.5 (2)C15—C13—C14—C8157.9 (3)
C5—C6—C8—C90.9 (2)C9—C8—C14—C17173.8 (2)
C21—C6—C8—C144.5 (3)C6—C8—C14—C1752.3 (3)
C5—C6—C8—C14123.85 (19)C9—C8—C14—C1358.2 (2)
C14—C8—C9—C1171.1 (3)C6—C8—C14—C13179.6 (2)
C6—C8—C9—C11163.0 (2)C12—C13—C15—C160.5 (3)
C14—C8—C9—C10156.75 (19)C14—C13—C15—C16178.0 (3)
C6—C8—C9—C1030.9 (2)C13—C15—C16—O10.4 (3)
C2—C1—C10—C2071.4 (3)C12—O1—C16—C150.2 (3)
C2—C1—C10—C9164.4 (2)C21—O3—C17—O2174.9 (2)
C2—C1—C10—C555.3 (3)C21—O3—C17—C144.1 (4)
C8—C9—C10—C1162.5 (2)C13—C14—C17—O25.8 (4)
C11—C9—C10—C174.3 (3)C8—C14—C17—O2125.9 (3)
C8—C9—C10—C2072.9 (2)C13—C14—C17—O3173.1 (2)
C11—C9—C10—C2050.4 (3)C8—C14—C17—O353.0 (3)
C8—C9—C10—C547.5 (2)C17—O3—C21—F74.3 (3)
C11—C9—C10—C5170.8 (2)C17—O3—C21—C648.0 (3)
C4—C5—C10—C156.6 (3)C8—C6—C21—F75.9 (3)
C6—C5—C10—C1167.69 (19)C5—C6—C21—F43.1 (3)
C4—C5—C10—C2067.4 (3)C8—C6—C21—O344.5 (3)
C6—C5—C10—C2068.4 (2)C5—C6—C21—O3163.5 (2)

Experimental details

Crystal data
Chemical formulaC20H25FO3
Mr332.40
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)9.440 (1), 9.366 (1), 9.741 (1)
β (°) 101.69 (1)
V3)843.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.40 × 0.08
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.961, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
1920, 1813, 1571
Rint0.031
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.097, 1.11
No. of reflections1813
No. of parameters218
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.19
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter0.6 (12)

Computer programs: CAD-4 Software (Enraf Nonius, 1989), CAD-4 Software, SDP (Fair, 1990), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), SHELXL97.

Selected geometric parameters (Å, º) top
F—C211.390 (3)C6—C81.533 (4)
O2—C171.192 (3)C8—C91.528 (3)
O3—C171.387 (4)C8—C141.533 (3)
O3—C211.421 (3)C9—C111.531 (4)
C5—C61.550 (3)C9—C101.539 (3)
C5—C101.560 (3)C13—C141.509 (4)
C6—C211.518 (3)C14—C171.488 (4)
C17—O3—C21120.2 (2)C11—C9—C10123.4 (2)
C4—C5—C6121.2 (2)C1—C10—C9115.0 (2)
C4—C5—C10117.0 (2)C1—C10—C5108.4 (2)
C6—C5—C10103.10 (19)C17—C14—C13119.0 (2)
C21—C6—C8109.7 (2)C17—C14—C8107.1 (2)
C21—C6—C5119.4 (2)C13—C14—C8106.1 (2)
C8—C6—C5103.42 (19)O2—C17—O3117.9 (3)
C9—C8—C14110.21 (19)O2—C17—C14128.7 (3)
C9—C8—C6107.32 (19)O3—C17—C14113.3 (2)
C14—C8—C6114.99 (19)F—C21—O3107.6 (2)
C8—C9—C11109.5 (2)F—C21—C6111.0 (2)
C8—C9—C10101.96 (19)O3—C21—C6112.1 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds