metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1164-m1165

Di­aqua­bis­­(N,N′-di­ethyl­nicotinamide-κN1)bis­­(4-fluoro­benzoato-κO)copper(II)

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, and bDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 18 July 2011; accepted 25 July 2011; online 30 July 2011)

The asymmetric unit of the title mononuclear CuII complex, [Cu(C7H4FO2)2(C10H14N2O)2(H2O)2], contains one-half of the mol­ecule. The CuII ion is located on an inversion centre, and is coordinated by two N atoms from two diethyl­nicotinamide ligands, two O atoms from two 4-fluoro­benzoate (PFB) ligands and two water mol­ecules in a distorted octa­hedral geometry. In the PFB ligand, the carboxyl­ate group is twisted at an angle of 2.10 (14)° from the attached benzene ring. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link mol­ecules related by translation along the a axis into chains. Weak inter­molecular C—H⋯O hydrogen bonds and ππ inter­actions between the pyridine rings of neighbouring mol­ecules [centroid-to-centroid distance = 3.571 (2) Å] further consolidate the crystal packing.

Related literature

For background to niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For infomation on the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (1996[Hökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470-2473.], 2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466-m467.],b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m607-m608.]); Hökelek & Necefoğlu (1998[Hökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242-1244.], 2007[Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821-m823.]); Necefoğlu et al. (2011[Necefoğlu, H., Maracı, A., Özbek, F. E., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m619-m620.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H4FO2)2(C10H14N2O)2(H2O)2]

  • Mr = 734.25

  • Triclinic, [P \overline 1]

  • a = 7.4802 (2) Å

  • b = 8.6753 (2) Å

  • c = 14.6695 (4) Å

  • α = 77.164 (3)°

  • β = 84.723 (4)°

  • γ = 65.151 (2)°

  • V = 842.23 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 100 K

  • 0.48 × 0.32 × 0.21 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.759, Tmax = 0.860

  • 13620 measured reflections

  • 4109 independent reflections

  • 3714 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.099

  • S = 1.15

  • 4109 reflections

  • 233 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O2i 0.83 (2) 1.90 (2) 2.7050 (19) 163 (3)
O4—H42⋯O3ii 0.83 (2) 2.01 (2) 2.834 (2) 172 (2)
C6—H6⋯O2ii 0.93 2.32 3.211 (2) 162
C10—H10⋯O2iii 0.93 2.48 3.394 (2) 170
Symmetry codes: (i) -x, -y, -z; (ii) x+1, y, z; (iii) -x, -y-1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized. Herewith we report its crystal structure (Fig. 1).

The asymmetric unit of the title mononuclear CuII complex contains one-half molecule, the CuII atom being located on an inversion center. The unit cell of the title compound contains also two N,N-diethylnicotinamide (DENA) ligands, two 4-fluorobenzoato (PFB) ligands and two coordinated water molecules. All ligands coordinate the Cu in a monodentate manner. The crystal structures of similar omplexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2] (Hökelek et al., 1996), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2] (Hökelek & Necefoğlu, 1998), [Co(C9H9O2)2(C10H14N2O)2(H2O)2] (Necefoğlu et al., 2011), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009a), [Mn(C9H10NO2)2(H2O)4].2H2O (Hökelek & Necefoğlu, 2007) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009b) have also been reported. In the copper(II) complex mentioned above the two benzoate ions coordinate to the CuII atom as bidentate ligands, while in the other structures all the ligands coordinate in a monodentate manner.

In the title complex, four O atoms (O1, O1', O4 and O4', see Fig. 1) in the equatorial plane around the CuII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the DENA ligands (N1 and N1') in the axial positions. The near equalities of the C1—O1 [1.2716 (19) Å] and C1—O2 [1.247 (2) Å] bonds in the carboxylate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The Cu—O bond lengths are 1.9833 (11) Å (for benzoate oxygen) and 2.4192 (12) Å (for water oxygen), and the Cu—N bond length is 2.0192 (14) Å, close to standard values (Allen et al., 1987). The Cu atom is displaced out of the mean plane of the carboxylate group (O1/C1/O2) by 0.7971 (1) Å. The dihedral angle between the planar carboxylate group and the adjacent benzene ring A (C2–C7) is 2.10 (14)°. The benzene A (C2–C7) and the pyridine B (N1/C8–C12) rings are oriented at a dihedral angle of A/B = 76.11 (6)°.

In the crystal structure, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules related by translation along axis a into chains. Weak intermolecular C—H···O hydrogen bonds (Table 1) and ππ interactions between the pyridine rings from the neighbouring molecules [Cg1···Cg1i = 3.571 (2) Å; symmetry code: (i) 2 - x, 1 - y, -z; Cg1 is the centroid of N1/C8—C12] consolidate further the crystal packing.

Related literature top

For background to niacin, see: Krishnamachari (1974). For infomation on the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996, 2009a,b); Hökelek & Necefoğlu (1998, 2007); Necefoğlu et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of CuSO4.5H2O (1.23 g, 5 mmol) in H2O (20 ml) and DENA (1.78 g, 10 mmol) in H2O (20 ml) with sodium 4-fluorobenzoate (1.62 g, 10 mmol) in H2O (50 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for a week, giving blue single crystals.

Refinement top

Atoms H41 and H42 (for water molecules) were located in a difference Fourier map and isotropically refined. The C-bound H atoms were positioned geometrically with C—H = 0.93–0.97 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code ('): -x, -y, -z].
Diaquabis(N,N'-diethylnicotinamide-κN1)bis(4- fluorobenzoato-κO)copper(II) top
Crystal data top
[Cu(C7H4FO2)2(C10H14N2O)2(H2O)2]Z = 1
Mr = 734.25F(000) = 383
Triclinic, P1Dx = 1.448 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4802 (2) ÅCell parameters from 9044 reflections
b = 8.6753 (2) Åθ = 2.9–28.4°
c = 14.6695 (4) ŵ = 0.72 mm1
α = 77.164 (3)°T = 100 K
β = 84.723 (4)°Block, blue
γ = 65.151 (2)°0.48 × 0.32 × 0.21 mm
V = 842.23 (4) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4109 independent reflections
Radiation source: fine-focus sealed tube3714 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 28.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.759, Tmax = 0.860k = 1111
13620 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0524P)2 + 0.2704P]
where P = (Fo2 + 2Fc2)/3
4109 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 0.57 e Å3
2 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu(C7H4FO2)2(C10H14N2O)2(H2O)2]γ = 65.151 (2)°
Mr = 734.25V = 842.23 (4) Å3
Triclinic, P1Z = 1
a = 7.4802 (2) ÅMo Kα radiation
b = 8.6753 (2) ŵ = 0.72 mm1
c = 14.6695 (4) ÅT = 100 K
α = 77.164 (3)°0.48 × 0.32 × 0.21 mm
β = 84.723 (4)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4109 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
3714 reflections with I > 2σ(I)
Tmin = 0.759, Tmax = 0.860Rint = 0.025
13620 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0332 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.57 e Å3
4109 reflectionsΔρmin = 0.45 e Å3
233 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.00000.01357 (9)
O10.16849 (16)0.15368 (15)0.10899 (8)0.0158 (2)
O20.04849 (17)0.19328 (17)0.21759 (8)0.0203 (3)
O30.43885 (17)0.29279 (17)0.12427 (8)0.0201 (3)
O40.29700 (18)0.01961 (18)0.07056 (9)0.0209 (3)
H410.242 (4)0.068 (3)0.1223 (13)0.047 (8)*
H420.382 (3)0.074 (2)0.0817 (16)0.032 (6)*
N10.03309 (19)0.20678 (18)0.05247 (9)0.0140 (3)
N20.2966 (2)0.34165 (19)0.26337 (10)0.0170 (3)
F10.65236 (17)0.32105 (18)0.47171 (7)0.0329 (3)
C10.1133 (2)0.1884 (2)0.19273 (11)0.0144 (3)
C20.2588 (2)0.2244 (2)0.26753 (11)0.0149 (3)
C30.2080 (2)0.2568 (2)0.36158 (11)0.0177 (3)
H30.08460.25640.37770.021*
C40.3405 (3)0.2895 (2)0.43123 (12)0.0209 (4)
H40.30800.31100.49410.025*
C50.5214 (3)0.2892 (2)0.40410 (12)0.0212 (4)
C60.5773 (2)0.2567 (2)0.31234 (12)0.0197 (3)
H60.70080.25680.29700.024*
C70.4429 (2)0.2236 (2)0.24351 (11)0.0159 (3)
H70.47610.20060.18080.019*
C80.2015 (2)0.3509 (2)0.04352 (11)0.0158 (3)
H80.30680.35550.01220.019*
C90.2241 (2)0.4928 (2)0.07912 (11)0.0170 (3)
H90.34230.59120.07110.020*
C100.0693 (2)0.4873 (2)0.12681 (11)0.0159 (3)
H100.08190.58080.15190.019*
C110.1058 (2)0.3376 (2)0.13609 (10)0.0141 (3)
C120.1186 (2)0.2029 (2)0.09675 (11)0.0141 (3)
H120.23740.10520.10110.017*
C130.2925 (2)0.3226 (2)0.17555 (11)0.0148 (3)
C140.1364 (3)0.3544 (3)0.33111 (12)0.0215 (4)
H14A0.13520.42660.37320.026*
H14B0.01170.41070.29790.026*
C150.1552 (3)0.1797 (3)0.38791 (16)0.0354 (5)
H15A0.04450.19530.42930.053*
H15B0.15840.10690.34660.053*
H15C0.27470.12620.42390.053*
C160.4830 (2)0.3304 (2)0.29629 (13)0.0211 (4)
H16A0.53770.39200.24650.025*
H16B0.45500.38850.34860.025*
C170.6367 (3)0.1461 (3)0.32646 (15)0.0288 (4)
H17A0.75450.14880.34550.043*
H17B0.58660.08550.37780.043*
H17C0.66600.08740.27510.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01438 (14)0.01390 (16)0.01479 (14)0.00694 (11)0.00242 (9)0.00428 (10)
O10.0159 (5)0.0163 (6)0.0160 (5)0.0067 (5)0.0017 (4)0.0041 (4)
O20.0151 (6)0.0250 (7)0.0224 (6)0.0102 (5)0.0015 (4)0.0035 (5)
O30.0144 (5)0.0262 (7)0.0218 (6)0.0087 (5)0.0012 (4)0.0092 (5)
O40.0163 (6)0.0227 (7)0.0216 (6)0.0052 (5)0.0000 (5)0.0063 (5)
N10.0131 (6)0.0153 (7)0.0159 (6)0.0077 (5)0.0011 (5)0.0044 (5)
N20.0141 (6)0.0198 (7)0.0189 (6)0.0069 (5)0.0020 (5)0.0063 (5)
F10.0312 (6)0.0496 (8)0.0231 (5)0.0225 (6)0.0122 (4)0.0007 (5)
C10.0147 (7)0.0100 (7)0.0197 (7)0.0047 (6)0.0021 (6)0.0052 (6)
C20.0156 (7)0.0122 (8)0.0176 (7)0.0056 (6)0.0011 (6)0.0045 (6)
C30.0167 (7)0.0172 (8)0.0206 (8)0.0080 (6)0.0000 (6)0.0047 (6)
C40.0250 (9)0.0235 (9)0.0157 (7)0.0116 (7)0.0011 (6)0.0029 (7)
C50.0227 (8)0.0231 (9)0.0204 (8)0.0109 (7)0.0082 (6)0.0033 (7)
C60.0160 (8)0.0209 (9)0.0240 (8)0.0091 (7)0.0024 (6)0.0039 (7)
C70.0170 (7)0.0148 (8)0.0168 (7)0.0073 (6)0.0007 (6)0.0034 (6)
C80.0135 (7)0.0177 (8)0.0166 (7)0.0064 (6)0.0002 (5)0.0044 (6)
C90.0129 (7)0.0174 (8)0.0193 (7)0.0041 (6)0.0006 (6)0.0051 (6)
C100.0164 (7)0.0144 (8)0.0183 (7)0.0064 (6)0.0011 (6)0.0065 (6)
C110.0141 (7)0.0158 (8)0.0149 (7)0.0082 (6)0.0002 (5)0.0037 (6)
C120.0126 (7)0.0143 (8)0.0162 (7)0.0059 (6)0.0008 (5)0.0036 (6)
C130.0145 (7)0.0121 (8)0.0188 (7)0.0055 (6)0.0020 (6)0.0037 (6)
C140.0196 (8)0.0264 (10)0.0183 (8)0.0075 (7)0.0001 (6)0.0081 (7)
C150.0334 (11)0.0348 (12)0.0418 (11)0.0194 (9)0.0083 (9)0.0077 (10)
C160.0186 (8)0.0229 (9)0.0255 (8)0.0082 (7)0.0068 (6)0.0099 (7)
C170.0203 (9)0.0243 (10)0.0397 (10)0.0036 (7)0.0097 (7)0.0097 (8)
Geometric parameters (Å, º) top
Cu1—O11.9833 (11)C6—H60.9300
Cu1—O1i1.9833 (11)C7—C61.388 (2)
Cu1—O42.4192 (12)C7—H70.9300
Cu1—O4i2.4192 (12)C8—H80.9300
Cu1—N12.0192 (14)C9—C81.382 (2)
Cu1—N1i2.0192 (14)C9—C101.385 (2)
O1—C11.2716 (19)C9—H90.9300
O2—C11.247 (2)C10—H100.9300
O3—C131.2363 (19)C11—C101.395 (2)
O4—H410.831 (17)C11—C131.505 (2)
O4—H420.833 (16)C12—C111.379 (2)
N1—C81.342 (2)C12—H120.9300
N1—C121.343 (2)C14—C151.514 (3)
N2—C131.339 (2)C14—H14A0.9700
N2—C141.467 (2)C14—H14B0.9700
N2—C161.475 (2)C15—H15A0.9600
F1—C51.3601 (19)C15—H15B0.9600
C1—C21.505 (2)C15—H15C0.9600
C2—C31.395 (2)C16—C171.519 (3)
C2—C71.393 (2)C16—H16A0.9700
C3—C41.388 (2)C16—H16B0.9700
C3—H30.9300C17—H17A0.9600
C4—C51.376 (3)C17—H17B0.9600
C4—H40.9300C17—H17C0.9600
C6—C51.376 (2)
O1—Cu1—O1i180.00 (9)C6—C7—C2120.55 (15)
O1—Cu1—O485.97 (4)C6—C7—H7119.7
O1i—Cu1—O494.03 (4)N1—C8—C9122.39 (15)
O1—Cu1—O4i94.03 (4)N1—C8—H8118.8
O1i—Cu1—O4i85.97 (4)C9—C8—H8118.8
O4i—Cu1—O4180.00 (9)C8—C9—C10119.52 (15)
N1—Cu1—O494.85 (5)C8—C9—H9120.2
N1i—Cu1—O485.15 (5)C10—C9—H9120.2
N1—Cu1—O4i85.15 (5)C9—C10—C11118.13 (16)
N1i—Cu1—O4i94.85 (5)C9—C10—H10120.9
O1—Cu1—N191.11 (5)C11—C10—H10120.9
O1i—Cu1—N188.89 (5)C10—C11—C13123.54 (15)
O1—Cu1—N1i88.89 (5)C12—C11—C10118.98 (15)
O1i—Cu1—N1i91.11 (5)C12—C11—C13116.96 (14)
N1i—Cu1—N1180.00 (6)N1—C12—C11122.80 (15)
C1—O1—Cu1127.30 (10)N1—C12—H12118.6
Cu1—O4—H4191.8 (19)C11—C12—H12118.6
Cu1—O4—H42114.0 (17)O3—C13—N2122.08 (15)
H41—O4—H42102 (2)O3—C13—C11117.74 (14)
C8—N1—Cu1122.34 (11)N2—C13—C11120.18 (14)
C8—N1—C12118.14 (15)N2—C14—C15113.02 (15)
C12—N1—Cu1119.51 (11)N2—C14—H14A109.0
C13—N2—C14124.35 (14)N2—C14—H14B109.0
C13—N2—C16117.12 (14)C15—C14—H14A109.0
C14—N2—C16118.20 (14)C15—C14—H14B109.0
O1—C1—C2115.78 (14)H14A—C14—H14B107.8
O2—C1—O1126.09 (14)C14—C15—H15A109.5
O2—C1—C2118.12 (14)C14—C15—H15B109.5
C3—C2—C1119.85 (14)C14—C15—H15C109.5
C7—C2—C1120.43 (14)H15A—C15—H15B109.5
C7—C2—C3119.72 (15)H15A—C15—H15C109.5
C2—C3—H3119.8H15B—C15—H15C109.5
C4—C3—C2120.43 (16)N2—C16—C17114.09 (15)
C4—C3—H3119.8N2—C16—H16A108.7
C3—C4—H4121.1N2—C16—H16B108.7
C5—C4—C3117.76 (15)C17—C16—H16A108.7
C5—C4—H4121.1C17—C16—H16B108.7
F1—C5—C4118.30 (15)H16A—C16—H16B107.6
F1—C5—C6117.84 (16)C16—C17—H17A109.5
C6—C5—C4123.86 (15)C16—C17—H17B109.5
C5—C6—C7117.68 (16)C16—C17—H17C109.5
C5—C6—H6121.2H17A—C17—H17B109.5
C7—C6—H6121.2H17A—C17—H17C109.5
C2—C7—H7119.7H17B—C17—H17C109.5
O4i—Cu1—O1—C121.24 (14)C14—N2—C16—C1793.55 (19)
O4—Cu1—O1—C1158.76 (14)O1—C1—C2—C3177.38 (15)
N1i—Cu1—O1—C173.55 (14)O1—C1—C2—C71.8 (2)
N1—Cu1—O1—C1106.45 (14)O2—C1—C2—C31.9 (2)
O1—Cu1—N1—C835.00 (12)O2—C1—C2—C7178.89 (15)
O1i—Cu1—N1—C8145.00 (12)C1—C2—C3—C4179.76 (16)
O1—Cu1—N1—C12143.87 (12)C7—C2—C3—C40.6 (3)
O1i—Cu1—N1—C1236.13 (12)C1—C2—C7—C6179.96 (16)
O4i—Cu1—N1—C8128.95 (12)C3—C2—C7—C60.8 (3)
O4—Cu1—N1—C851.05 (12)C2—C3—C4—C50.1 (3)
O4i—Cu1—N1—C1249.92 (12)C3—C4—C5—F1179.97 (16)
O4—Cu1—N1—C12130.08 (12)C3—C4—C5—C60.7 (3)
Cu1—O1—C1—O230.3 (2)C7—C6—C5—F1179.76 (16)
Cu1—O1—C1—C2148.91 (11)C7—C6—C5—C40.5 (3)
Cu1—N1—C8—C9179.77 (12)C2—C7—C6—C50.3 (3)
C12—N1—C8—C90.9 (2)C10—C9—C8—N10.7 (2)
Cu1—N1—C12—C11178.59 (11)C8—C9—C10—C110.7 (2)
C8—N1—C12—C112.5 (2)C12—C11—C10—C90.8 (2)
C14—N2—C13—O3171.65 (16)C13—C11—C10—C9172.22 (15)
C14—N2—C13—C118.5 (2)C10—C11—C13—O3118.97 (18)
C16—N2—C13—O31.6 (2)C10—C11—C13—N260.9 (2)
C16—N2—C13—C11178.22 (14)C12—C11—C13—O352.6 (2)
C13—N2—C14—C1589.5 (2)C12—C11—C13—N2127.53 (17)
C16—N2—C14—C1583.7 (2)N1—C12—C11—C102.5 (2)
C13—N2—C16—C1780.1 (2)N1—C12—C11—C13174.46 (14)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O2i0.83 (2)1.90 (2)2.7050 (19)163 (3)
O4—H42···O3ii0.83 (2)2.01 (2)2.834 (2)172 (2)
C6—H6···O2ii0.932.323.211 (2)162
C10—H10···O2iii0.932.483.394 (2)170
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C7H4FO2)2(C10H14N2O)2(H2O)2]
Mr734.25
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.4802 (2), 8.6753 (2), 14.6695 (4)
α, β, γ (°)77.164 (3), 84.723 (4), 65.151 (2)
V3)842.23 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.48 × 0.32 × 0.21
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.759, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
13620, 4109, 3714
Rint0.025
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.099, 1.15
No. of reflections4109
No. of parameters233
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.45

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O2i0.83 (2)1.90 (2)2.7050 (19)163 (3)
O4—H42···O3ii0.834 (18)2.007 (18)2.834 (2)172 (2)
C6—H6···O2ii0.932.323.211 (2)162
C10—H10···O2iii0.932.483.394 (2)170
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x, y1, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer. This work was financially supported by the Scientific and Technological Research Council of Turkey (grant No. 106 T472).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m607–m608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470–2473.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242–1244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Maracı, A., Özbek, F. E., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m619–m620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 8| August 2011| Pages m1164-m1165
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds