Download citation
Download citation
link to html
The crystal structure of the title compound, [TiBr3(Me3Cp)], where Me3Cp is 1,2,3-tri­methyl­cyclo­penta­dienyl (C8H11), has been determined. The mol­ecule has a typical piano-stool structure in which one η5-bonded tri­methyl­cyclo­penta­dienyl ring and three bromide ligands occupy the pseudo-tetrahedral coord­ination sites around the titanium(IV) centre. The Ti–ring distance is 2.0162 (16) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536804018069/cv6348sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536804018069/cv6348Isup2.hkl
Contains datablock I

CCDC reference: 248756

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.026
  • wR factor = 0.064
  • Data-to-parameter ratio = 23.7

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Computing details top

Data collection: COLLECT (Hooft, 1998) and DENZO (Otwinowski & Minor, 1997); cell refinement: COLLECT and DENZO; data reduction: COLLECT and DENZO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Tribromo(η5-1,2,3-trimethylcyclopentadienyl)titanium(IV) top
Crystal data top
[TiBr3(C8H11)]Z = 2
Mr = 394.80F(000) = 372
Triclinic, P1Dx = 2.239 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.8210 (3) ÅCell parameters from 6322 reflections
b = 8.5280 (3) Åθ = 1–27.5°
c = 11.0770 (3) ŵ = 10.91 mm1
α = 92.547 (2)°T = 150 K
β = 95.901 (2)°Prism, red
γ = 113.3971 (17)°0.4 × 0.25 × 0.18 mm
V = 585.66 (4) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
2681 independent reflections
Radiation source: fine-focus sealed tube2362 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 1.9°
φ and ω scans to fill the Ewald sphereh = 88
Absorption correction: integration
Gaussian integration (Coppens, 1970)
k = 1111
Tmin = 0.075, Tmax = 0.301l = 1414
9260 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0276P)2 + 0.5446P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2681 reflectionsΔρmax = 0.80 e Å3
113 parametersΔρmin = 0.70 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0120 (8)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.44405 (7)0.30177 (6)0.28270 (4)0.01755 (12)
Br10.35027 (5)0.54335 (4)0.28845 (3)0.03004 (10)
Br20.25134 (5)0.14453 (5)0.09349 (3)0.03379 (11)
Br30.23922 (5)0.12820 (4)0.42712 (3)0.03421 (11)
C10.7383 (5)0.2831 (4)0.3942 (2)0.0229 (6)
H10.72060.22760.46520.028*
C20.7850 (5)0.4577 (4)0.3859 (3)0.0239 (6)
H20.80230.53730.45070.029*
C30.8012 (4)0.4928 (4)0.2634 (3)0.0216 (6)
C40.7620 (4)0.3361 (4)0.1947 (2)0.0195 (5)
C50.7228 (4)0.2062 (4)0.2759 (2)0.0210 (6)
C60.8657 (5)0.6657 (4)0.2161 (3)0.0360 (8)
H6A0.85190.74460.27580.054*
H6B0.77390.65690.14210.054*
H6C1.01260.70640.20010.054*
C70.7807 (5)0.3157 (4)0.0623 (3)0.0303 (7)
H7A0.73680.39470.02000.045*
H7B0.68970.20040.02930.045*
H7C0.92750.33890.05230.045*
C80.6782 (5)0.0226 (4)0.2423 (3)0.0304 (7)
H8A0.81120.01200.23350.046*
H8B0.58380.01680.16670.046*
H8C0.61120.04550.30510.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0143 (2)0.0189 (3)0.0173 (2)0.0051 (2)0.00061 (18)0.00115 (18)
Br10.02342 (17)0.02703 (18)0.04276 (19)0.01416 (13)0.00262 (13)0.00020 (13)
Br20.02421 (17)0.0442 (2)0.02602 (16)0.01067 (15)0.00666 (12)0.01377 (14)
Br30.02570 (17)0.0375 (2)0.03206 (17)0.00306 (14)0.00868 (13)0.01062 (14)
C10.0207 (14)0.0282 (16)0.0202 (13)0.0109 (12)0.0002 (11)0.0024 (12)
C20.0172 (13)0.0252 (15)0.0253 (13)0.0072 (12)0.0046 (11)0.0082 (12)
C30.0141 (13)0.0188 (14)0.0312 (14)0.0061 (11)0.0021 (11)0.0017 (11)
C40.0146 (12)0.0202 (14)0.0237 (13)0.0071 (11)0.0027 (10)0.0017 (11)
C50.0165 (13)0.0215 (15)0.0254 (13)0.0087 (11)0.0004 (10)0.0015 (11)
C60.0276 (17)0.0201 (16)0.060 (2)0.0085 (14)0.0095 (15)0.0080 (15)
C70.0297 (16)0.0355 (18)0.0272 (15)0.0135 (15)0.0092 (12)0.0029 (13)
C80.0292 (16)0.0211 (16)0.0413 (17)0.0116 (13)0.0020 (13)0.0010 (13)
Geometric parameters (Å, º) top
Ti1—C12.311 (3)C3—C61.498 (4)
Ti1—C22.312 (3)C4—C51.418 (4)
Ti1—C52.354 (3)C4—C71.494 (4)
Ti1—C32.371 (3)C5—C81.493 (4)
Ti1—C42.386 (3)C6—H6A0.9600
Ti1—Br12.3876 (5)C6—H6B0.9600
Ti1—Br22.3880 (5)C6—H6C0.9600
Ti1—Br32.3937 (6)C7—H7A0.9600
C1—C21.403 (4)C7—H7B0.9600
C1—C51.414 (4)C7—H7C0.9600
C1—H10.9300C8—H8A0.9600
C2—C31.408 (4)C8—H8B0.9600
C2—H20.9300C8—H8C0.9600
C3—C41.421 (4)
C1—Ti1—C235.34 (11)C3—C2—H2125.6
C1—Ti1—C535.28 (10)Ti1—C2—H2119.1
C2—Ti1—C558.54 (10)C2—C3—C4107.3 (2)
C1—Ti1—C358.45 (10)C2—C3—C6126.2 (3)
C2—Ti1—C334.96 (10)C4—C3—C6126.3 (3)
C5—Ti1—C358.23 (10)C2—C3—Ti170.23 (16)
C1—Ti1—C458.17 (9)C4—C3—Ti173.21 (16)
C2—Ti1—C458.00 (10)C6—C3—Ti1125.58 (19)
C5—Ti1—C434.80 (9)C5—C4—C3108.2 (2)
C3—Ti1—C434.76 (9)C5—C4—C7125.8 (3)
C1—Ti1—Br1126.22 (8)C3—C4—C7125.8 (3)
C2—Ti1—Br192.99 (7)C5—C4—Ti171.35 (15)
C5—Ti1—Br1146.22 (8)C3—C4—Ti172.03 (15)
C3—Ti1—Br188.09 (7)C7—C4—Ti1126.92 (19)
C4—Ti1—Br1116.42 (7)C1—C5—C4107.5 (2)
C1—Ti1—Br2127.63 (7)C1—C5—C8126.5 (3)
C2—Ti1—Br2143.81 (8)C4—C5—C8126.0 (3)
C5—Ti1—Br293.49 (7)C1—C5—Ti170.71 (15)
C3—Ti1—Br2112.40 (7)C4—C5—Ti173.85 (15)
C4—Ti1—Br285.86 (7)C8—C5—Ti1122.0 (2)
Br1—Ti1—Br2102.71 (2)C3—C6—H6A109.5
C1—Ti1—Br385.45 (8)C3—C6—H6B109.5
C2—Ti1—Br3105.96 (8)H6A—C6—H6B109.5
C5—Ti1—Br3102.05 (7)C3—C6—H6C109.5
C3—Ti1—Br3140.54 (7)H6A—C6—H6C109.5
C4—Ti1—Br3136.84 (7)H6B—C6—H6C109.5
Br1—Ti1—Br3103.30 (2)C4—C7—H7A109.5
Br2—Ti1—Br3101.87 (2)C4—C7—H7B109.5
C2—C1—C5108.1 (2)H7A—C7—H7B109.5
C2—C1—Ti172.36 (16)C4—C7—H7C109.5
C5—C1—Ti174.01 (15)H7A—C7—H7C109.5
C2—C1—H1125.9H7B—C7—H7C109.5
C5—C1—H1125.9C5—C8—H8A109.5
Ti1—C1—H1119.5C5—C8—H8B109.5
C1—C2—C3108.9 (2)H8A—C8—H8B109.5
C1—C2—Ti172.30 (16)C5—C8—H8C109.5
C3—C2—Ti174.81 (16)H8A—C8—H8C109.5
C1—C2—H2125.6H8B—C8—H8C109.5
Selected geometric parameters (Å, °). top
Ti1-Cg2.0162 (16)Ti1-Br22.3880 (6)
Ti1-Br12.3877 (6)Ti1-Br32.3937 (6)
Cg-Ti1-Br1116.04 (5)Br1-Ti1-Br2102.71 (2)
Cg-Ti1-Br2114.32 (4)Br2-Ti1-Br3101.87 (2)
Cg-Ti1-Br3116.61 (4)Br3-Ti1-Br1103.30 (2)
Pr-C3-C63.9 (2)Pr-C4-C74.5 (2)
Pr-C5-C80.8 (2)
a) Cg is the centroid of the cyclopentadienyl ring.

b) Pr is the ring plane defined by atoms C1-C5.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds