Download citation
Download citation
link to html
The crystal structure of the title compound, C9H10O4, contains infinite hydrogen-bonded chains of mol­ecules. The norborn­ene skeleton is slightly twisted.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802019761/cv6159sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802019761/cv6159Isup2.hkl
Contains datablock I

CCDC reference: 202313

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.045
  • wR factor = 0.106
  • Data-to-parameter ratio = 13.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The title compound, (I), alternatively called bicyclo[2.2.1]hept-2-ene-trans-5,6-dicarboxylic acid, was studied as part of a series of small-molecule models of organic polymers influencing the crystallization of inorganic salts, particularly CaCO3 (Megson, 1997; Feast et al., 2002).

Compound (I) was prepared by the Diels–Alder addition of cyclopentadiene to fumaric acid (Diels & Alder, 1928; Alder & Stein, 1933). The asymmetric unit of (I) comprises one molecule. Both carboxyl groups form usual pairs of hydrogen bonds with their inversion equivalents (Fig. 1), linking the molecules into an infinite zigzag chain, the general direction of which is parallel to the crystallographic a axis. trans-Substitution results in a slight twisting of the norbornene skeleton, the C2C3 and C5—C6 bonds forming an angle of 4.6 (2)°. On the other hand, the C5—C6 bond in (I) is slightly shorter than the corresponding bonds in cis-dicarboxylic acid derivatives, e.g. 1.566 (2)–1.574 (2) Å (Bolte et al., 2000, Batsanov & Hesselink, 2002a,b,c), due to lower steric repulsion between the carboxylic acid groups.

Experimental top

Fumaric acid (3.08 g, 27 mmol) and cyclopentadiene (2.3 ml, 2.3 g, 35 mmol) in 50 ml of dry THF were stirred at room temperature for 48 h. The solvent was removed using rotary evaporator and the residue recrystallized from doubly distilled water, yielding 4.41 g (93%) of (I) [m.p. 458–459 K, cf. 460–461 K (Alder & Stein, 1933)].

Refinement top

All H atoms were refined in isotropic approximation; C—H distances were in the range 0.97 (2)–0.99 (2) Å.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the intermolecular hydrogen bonding [symmetry codes: (i) −x, 1 − y, 1 − z; (ii) 1 − x, 1 − y, 1 − z]. Displacement ellipsoids are drawn at the 50% probability level.
bicyclo[2.2.1]hept-2-ene-trans-5,6-dicarboxylic acid top
Crystal data top
C9H10O4Dx = 1.456 Mg m3
Mr = 182.17Melting point: 185–185°C K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.698 (1) ÅCell parameters from 471 reflections
b = 5.3906 (3) Åθ = 10.2–20.0°
c = 12.153 (1) ŵ = 0.12 mm1
β = 92.56 (1)°T = 150 K
V = 831.04 (11) Å3Plate, colourless
Z = 40.40 × 0.22 × 0.16 mm
F(000) = 384
Data collection top
SMART 1K CCD area-detector
diffractometer
1773 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 29.0°, θmin = 1.6°
Detector resolution: 8 pixels mm-1h = 1217
ω scansk = 76
6167 measured reflectionsl = 1614
2187 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045All H-atom parameters refined
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0291P)2 + 0.6115P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2187 reflectionsΔρmax = 0.32 e Å3
159 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (3)
Crystal data top
C9H10O4V = 831.04 (11) Å3
Mr = 182.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.698 (1) ŵ = 0.12 mm1
b = 5.3906 (3) ÅT = 150 K
c = 12.153 (1) Å0.40 × 0.22 × 0.16 mm
β = 92.56 (1)°
Data collection top
SMART 1K CCD area-detector
diffractometer
1773 reflections with I > 2σ(I)
6167 measured reflectionsRint = 0.039
2187 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.106All H-atom parameters refined
S = 1.08Δρmax = 0.32 e Å3
2187 reflectionsΔρmin = 0.22 e Å3
159 parameters
Special details top

Experimental. The data collection nominally covered more than a hemisphere of reciprocal space, by a combination of 4 sets of ω scans; each set at different ϕ and/or 2θ angles and each scan (10 s exposure) covering 0.3° in ω. Crystal to detector distance 4.52 cm. Crystal decay was monitored by repeating 50 initial frames at the end of data collection and comparing 42 duplicate reflections, which showed a 0.5% fall of intensity. "

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08686 (10)0.7105 (2)0.43274 (11)0.0334 (3)
H010.032 (2)0.704 (5)0.481 (2)0.071 (8)*
O20.05741 (10)0.3044 (2)0.41813 (11)0.0318 (3)
O30.45985 (9)0.2297 (2)0.41626 (10)0.0273 (3)
H030.5147 (19)0.301 (4)0.4585 (19)0.049 (7)*
O40.38292 (9)0.5890 (2)0.45826 (10)0.0283 (3)
C10.29903 (12)0.1375 (3)0.24774 (12)0.0196 (3)
H10.3371 (14)0.021 (3)0.2579 (14)0.021 (4)*
C20.34528 (13)0.3228 (3)0.16899 (12)0.0240 (3)
H20.4209 (16)0.331 (4)0.1535 (16)0.029 (5)*
C30.26965 (14)0.4828 (3)0.13903 (12)0.0256 (4)
H30.2763 (15)0.629 (4)0.0938 (17)0.033 (5)*
C40.17152 (13)0.4121 (3)0.19849 (12)0.0216 (3)
H40.1028 (15)0.477 (3)0.1713 (15)0.023 (5)*
C50.20037 (11)0.4853 (3)0.32208 (12)0.0172 (3)
H50.2327 (14)0.648 (4)0.3265 (14)0.021 (4)*
C60.28176 (11)0.2821 (3)0.35717 (11)0.0169 (3)
H60.2518 (14)0.170 (4)0.4107 (15)0.024 (5)*
C70.18371 (13)0.1273 (3)0.20292 (13)0.0227 (3)
H710.1353 (15)0.045 (3)0.2529 (15)0.023 (5)*
H720.1763 (16)0.050 (4)0.1295 (17)0.031 (5)*
C80.10782 (11)0.4889 (3)0.39496 (12)0.0183 (3)
C90.37962 (11)0.3847 (3)0.41454 (12)0.0191 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0368 (7)0.0199 (6)0.0452 (8)0.0004 (5)0.0207 (6)0.0036 (5)
O20.0309 (6)0.0224 (6)0.0437 (7)0.0059 (5)0.0182 (5)0.0065 (5)
O30.0187 (5)0.0309 (6)0.0315 (6)0.0052 (5)0.0065 (5)0.0124 (5)
O40.0240 (6)0.0252 (6)0.0350 (6)0.0032 (5)0.0080 (5)0.0106 (5)
C10.0215 (7)0.0182 (7)0.0190 (7)0.0009 (6)0.0003 (5)0.0033 (5)
C20.0284 (8)0.0259 (8)0.0180 (7)0.0045 (7)0.0056 (6)0.0053 (6)
C30.0375 (9)0.0243 (8)0.0153 (7)0.0039 (7)0.0047 (6)0.0001 (6)
C40.0237 (7)0.0231 (7)0.0175 (7)0.0005 (6)0.0035 (6)0.0012 (6)
C50.0173 (7)0.0167 (7)0.0175 (6)0.0008 (5)0.0000 (5)0.0007 (5)
C60.0170 (6)0.0182 (6)0.0156 (6)0.0007 (5)0.0006 (5)0.0008 (5)
C70.0249 (8)0.0210 (7)0.0216 (7)0.0023 (6)0.0046 (6)0.0024 (6)
C80.0170 (6)0.0192 (7)0.0186 (7)0.0013 (5)0.0020 (5)0.0001 (5)
C90.0174 (7)0.0241 (7)0.0159 (6)0.0004 (6)0.0012 (5)0.0015 (6)
Geometric parameters (Å, º) top
O1—C81.3111 (19)C3—C41.517 (2)
O1—H010.94 (3)C3—H30.97 (2)
O2—C81.2227 (19)C4—C71.544 (2)
O3—C91.3173 (18)C4—C51.580 (2)
O3—H030.93 (2)C4—H40.985 (19)
O4—C91.2227 (19)C5—C81.503 (2)
C1—C21.520 (2)C5—C61.553 (2)
C1—C71.540 (2)C5—H50.969 (19)
C1—C61.565 (2)C6—C91.503 (2)
C1—H10.984 (18)C6—H60.978 (19)
C2—C31.330 (2)C7—H710.988 (19)
C2—H20.99 (2)C7—H720.99 (2)
C8—O1—H01110.7 (18)C6—C5—C4102.02 (11)
C9—O3—H03107.9 (15)C8—C5—H5107.2 (11)
C2—C1—C7100.88 (12)C6—C5—H5110.4 (10)
C2—C1—C6106.29 (12)C4—C5—H5111.0 (10)
C7—C1—C698.70 (12)C9—C6—C5113.20 (12)
C2—C1—H1116.5 (10)C9—C6—C1115.68 (12)
C7—C1—H1117.8 (10)C5—C6—C1103.58 (11)
C6—C1—H1114.3 (10)C9—C6—H6104.9 (11)
C3—C2—C1107.72 (14)C5—C6—H6110.2 (11)
C3—C2—H2127.9 (12)C1—C6—H6109.3 (11)
C1—C2—H2123.9 (12)C1—C7—C493.96 (12)
C2—C3—C4107.76 (14)C1—C7—H71114.0 (11)
C2—C3—H3127.1 (12)C4—C7—H71113.8 (11)
C4—C3—H3124.8 (12)C1—C7—H72112.7 (12)
C3—C4—C7100.57 (13)C4—C7—H72112.7 (12)
C3—C4—C5103.27 (12)H71—C7—H72109.2 (16)
C7—C4—C5101.33 (12)O2—C8—O1122.95 (14)
C3—C4—H4119.0 (11)O2—C8—C5123.80 (14)
C7—C4—H4117.0 (11)O1—C8—C5113.24 (13)
C5—C4—H4113.2 (11)O4—C9—O3123.58 (14)
C8—C5—C6112.08 (12)O4—C9—C6123.02 (13)
C8—C5—C4114.16 (12)O3—C9—C6113.36 (13)
O2—C8—C5—C649.76 (19)C5—C6—C9—O420.6 (2)
C8—C5—C6—C9105.37 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.94 (3)1.70 (3)2.6350 (17)173 (3)
O3—H03···O4ii0.93 (2)1.72 (2)2.6446 (16)176 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H10O4
Mr182.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)12.698 (1), 5.3906 (3), 12.153 (1)
β (°) 92.56 (1)
V3)831.04 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.22 × 0.16
Data collection
DiffractometerSMART 1K CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6167, 2187, 1773
Rint0.039
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.106, 1.08
No. of reflections2187
No. of parameters159
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.32, 0.22

Computer programs: SMART (Siemens, 1995), SMART, SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), SHELXTL.

Selected geometric parameters (Å, º) top
O1—C81.3111 (19)C2—C31.330 (2)
O2—C81.2227 (19)C3—C41.517 (2)
O3—C91.3173 (18)C4—C71.544 (2)
O4—C91.2227 (19)C4—C51.580 (2)
C1—C21.520 (2)C5—C81.503 (2)
C1—C71.540 (2)C5—C61.553 (2)
C1—C61.565 (2)C6—C91.503 (2)
C2—C1—C7100.88 (12)C8—C5—C6112.08 (12)
C2—C1—C6106.29 (12)C8—C5—C4114.16 (12)
C7—C1—C698.70 (12)C6—C5—C4102.02 (11)
C3—C2—C1107.72 (14)C9—C6—C5113.20 (12)
C2—C3—C4107.76 (14)C9—C6—C1115.68 (12)
C3—C4—C7100.57 (13)C5—C6—C1103.58 (11)
C3—C4—C5103.27 (12)C1—C7—C493.96 (12)
C7—C4—C5101.33 (12)
O2—C8—C5—C649.76 (19)C5—C6—C9—O420.6 (2)
C8—C5—C6—C9105.37 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H01···O2i0.94 (3)1.70 (3)2.6350 (17)173 (3)
O3—H03···O4ii0.93 (2)1.72 (2)2.6446 (16)176 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds