Download citation
Download citation
link to html
The crystal structure of the title compound, C17H14Cl2FN3O·H2O, is stabilized by hydrogen bonds. The morpholine ring exhibits a typical chair conformation, while the benz­imidazole system is planar.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802015842/cv6142sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802015842/cv6142Isup2.hkl
Contains datablock I

CCDC reference: 198333

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.038
  • wR factor = 0.106
  • Data-to-parameter ratio = 14.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

ABSTY_01 Extra text has been found in the _exptl_absorpt_correction_type field, which should be only a single keyword. A literature citation should be included in the _exptl_absorpt_process_details field.

Comment top

The benzimidazole nucleus, which is a useful structure for further molecular exploration and for the development of new pharmaceutical compounds, has received much attention in recent years (Mann et al., 2001; Nakano et al., 2000). Owing to the versatility of this heterocycle, we are focusing our research efforts on new and potent benzimidazole derivatives. In our previous studies we described the synthesis and antimicrobial activities of some benzimidazole derivatives (Göker et al., 2001; Kuş et al., 2001). 2-(substituted phenyl)- benzimidazoles have different pharmaceutical activities such as antibacterial, antiviral, antitumoral and anti-inflammatory (Coburn et al., 1987; Roth et al., 1997; Chen et al., 1993; Denny et al., 1993; Evans et al., 1996).

To evaluate their antimicrobial activities, we synthesized 2-(2,4-Dichlorophenyl)-5-fluoro-6-morpholin-4-yl-1H-benzimidazole and its analogues. The synthesis and physical and spectroscopic data of this compound, which has a substituted phenyl ring at the 2 position of the benzimidazole nucleus, has been reported by us (Kuş, 2002). In this research, the X-ray structure of its monohydrate, (I), was determined in order to establish its conformation.

The intramolecular bond distances and angles (Table 1) for the benzimidazole moiety of (I) are in good agreement with those observed in other benzimidazole derivatives (Göker et al., 1995; Özbey et al., 1998; Kendi et al., 1999; Vasudevan et al., 1994; Balasubramanian et al., 1996). The bond lengths C15—Cl1 and C17—Cl2 (Table 1) are within the expected range (Allen et al., 1987).

As expected, the benzimidazole ring system is essentially planar [maximum deviation 0.017 (3) Å for C9], with a dihedral angle of 1.54 (9) Å between the imidazole and the benzene ring planes. The F atom lies −0.077 (2) Å from the least-squares plane defined by all the atoms of the two fused rings. In the molecule, the benzimidazole system is coplanar with the phenyl substituent owing to the hydrogen bonding between the imidazole N atoms and the chlorine and one of the carbon atoms of the phenyl moiety (Table 2). The dihedral angle between the best planes of these rings is 0.15 (7)°, so the structure is almost planar except for the morpholin ring, as shown in Fig. 1. The dichlorophenyl ring is planar and the Cl1 atom is situated 0.0240 (9) Å above this plane.

The morpholin ring deviates from planarity, with atoms N2 and O1 displaced from the C10/C11/C12/C13 mean plane by 0.689 (2) and −0.645 (2) Å, respectively. The dihedral angle between the best planes of the morpholin ring and the benzimidazole ring is 40.8 (1)°. The puckering parameters (Cremer & Pople, 1975) of this ring are Q=0.581 (2) Å, θ=177.1 (3)° and ϕ=-43 (5)°, thus the morpholin ring adopts a chair conformation.

The crystal structure of the title compound is stabilized by intra- and intermolecular hydrogen bonds (Table 2, Fig. 2).

Experimental top

In order to obtain 2-(2,4-Dichlorophenyl)-5-fluoro-6-morpholin-4-yl-1H-benzimidazole (Kuş, 2002), to a suspension of 4-fluoro-5-morpholin-4-yl-benzene-1,2-diamine (Sanna et al., 1998) (0,211 g, 1 mmol) in DMF (5 ml), the sodium metabisulfite adduct of 2,4-dichlorobenzaldehyde (0.191 g, 1 mmol) was added and the mixture was heated under a nitrogen atmosphere for 4 h at 333 K. Water was added to the reaction medium and the solid product obtained was collected by filtration and washed with water. The residue was chromatographed [EtOAc: n-hexane (1:2)] and recrystallized from ethanol, affording 0,311 mg (85%) of (I); m.p. 485–487 K. The assigned structure was substantiated by IR, 1H NMR and MS data.

Refinement top

The H atoms of N1 and water molecule were located from a difference Fourier map and refined freely. The other H atoms were positioned geometrically at distances 0.93 and 0.97 Å for methylene and aromatic H atoms, respectively, and refined riding on their parent atoms.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1965); software used to prepare material for publication: PLATON (Spek, 2000).

Figures top
[Figure 1] Fig. 1. ORTEP (Johnson, 1965) drawing of the asymmetric unit of the title compound with the atomic numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. The intermolecular hydrogen bonds in (I).
(I) top
Crystal data top
C17H14Cl2FN3O·H2ODx = 1.519 Mg m3
Mr = 384.23Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 25 reflections
a = 7.4455 (7) Åθ = 10.2–18.0°
b = 15.310 (3) ŵ = 0.41 mm1
c = 29.487 (3) ÅT = 295 K
V = 3361.2 (8) Å3Prism, light yellow
Z = 80.48 × 0.36 × 0.24 mm
F(000) = 1584
Data collection top
Enraf-Nonius TurboCAD4
diffractometer
Rint = 0.079
non–profiled ω scansθmax = 26.3°, θmin = 2.7°
Absorption correction: psi scan (north et al., 1968)
?
h = 09
Tmin = 0.826, Tmax = 0.907k = 019
3893 measured reflectionsl = 036
3403 independent reflections3 standard reflections every 120 min
2174 reflections with I > 2σ(I) intensity decay: 4%
Refinement top
Refinement on F25 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0454P)2 + 1.0249P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.23 e Å3
3403 reflectionsΔρmin = 0.32 e Å3
238 parameters
Crystal data top
C17H14Cl2FN3O·H2OV = 3361.2 (8) Å3
Mr = 384.23Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.4455 (7) ŵ = 0.41 mm1
b = 15.310 (3) ÅT = 295 K
c = 29.487 (3) Å0.48 × 0.36 × 0.24 mm
Data collection top
Enraf-Nonius TurboCAD4
diffractometer
2174 reflections with I > 2σ(I)
Absorption correction: psi scan (north et al., 1968)
?
Rint = 0.079
Tmin = 0.826, Tmax = 0.9073 standard reflections every 120 min
3893 measured reflections intensity decay: 4%
3403 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0385 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.23 e Å3
3403 reflectionsΔρmin = 0.32 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.4415 (3)0.16610 (12)0.09903 (7)0.0535 (5)
H10.133 (4)0.2013 (13)0.1179 (9)0.056 (8)*
H210.382 (4)0.1131 (15)0.1033 (10)0.068 (10)*
H220.572 (3)0.170 (3)0.0908 (15)0.150 (19)*
C20.2107 (3)0.07292 (15)0.13048 (8)0.0339 (5)
C40.2742 (4)0.00320 (17)0.01776 (8)0.0454 (7)
H40.31250.05440.01540.054*
C50.2488 (4)0.05422 (16)0.01928 (8)0.0419 (6)
C60.1896 (3)0.14190 (15)0.01880 (8)0.0346 (5)
C70.1546 (3)0.17945 (15)0.02315 (8)0.0338 (5)
H70.11510.23690.02550.041*
C80.1809 (3)0.12803 (14)0.06172 (8)0.0325 (5)
C90.2396 (3)0.04220 (16)0.05994 (8)0.0363 (6)
C100.0377 (4)0.15492 (17)0.09148 (9)0.0479 (7)
H10A0.07980.16710.07870.058*
H10B0.04940.09220.09510.058*
C110.0566 (4)0.19969 (18)0.13705 (9)0.0532 (7)
H11A0.17370.18640.14970.064*
H11B0.03380.17720.15760.064*
C120.1692 (4)0.32403 (17)0.10326 (9)0.0504 (7)
H12A0.15390.38670.10020.061*
H12B0.28720.31350.11610.061*
C130.1595 (4)0.28246 (16)0.05668 (8)0.0410 (6)
H13A0.25410.30570.03760.049*
H13B0.0450.2960.04270.049*
C140.2112 (3)0.06133 (16)0.18017 (8)0.0356 (6)
C150.1623 (4)0.12234 (16)0.21325 (8)0.0387 (6)
C160.1670 (4)0.10329 (16)0.25924 (8)0.0430 (6)
H160.1340.14510.28060.052*
C170.2212 (4)0.02148 (17)0.27270 (8)0.0449 (7)
C180.2695 (4)0.04135 (17)0.24157 (9)0.0497 (7)
H180.30520.09660.2510.06*
C190.2638 (4)0.02068 (16)0.19617 (9)0.0443 (6)
H190.29640.06320.17520.053*
Cl10.08997 (13)0.22705 (4)0.19919 (2)0.0626 (3)
Cl20.22726 (12)0.00354 (5)0.32997 (2)0.0651 (3)
F10.2899 (3)0.01926 (10)0.06064 (5)0.0644 (5)
N10.1615 (3)0.14605 (13)0.10721 (7)0.0351 (5)
N20.1796 (3)0.18785 (12)0.06074 (6)0.0341 (5)
N30.2587 (3)0.00853 (12)0.10326 (7)0.0389 (5)
O10.0371 (3)0.29124 (12)0.13328 (6)0.0526 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0563 (14)0.0337 (10)0.0704 (13)0.0020 (10)0.0069 (11)0.0007 (9)
C20.0351 (14)0.0306 (12)0.0359 (13)0.0041 (11)0.0000 (10)0.0030 (10)
C40.0626 (19)0.0325 (13)0.0410 (14)0.0075 (13)0.0058 (13)0.0048 (11)
C50.0594 (17)0.0363 (13)0.0300 (12)0.0041 (12)0.0067 (12)0.0073 (10)
C60.0352 (14)0.0330 (12)0.0357 (12)0.0021 (11)0.0020 (11)0.0005 (10)
C70.0363 (14)0.0294 (12)0.0359 (12)0.0021 (11)0.0015 (11)0.0027 (10)
C80.0327 (13)0.0299 (12)0.0350 (12)0.0022 (10)0.0013 (10)0.0044 (10)
C90.0423 (14)0.0321 (12)0.0344 (12)0.0014 (11)0.0021 (11)0.0017 (10)
C100.0517 (17)0.0462 (15)0.0458 (15)0.0092 (14)0.0077 (13)0.0026 (12)
C110.068 (2)0.0495 (16)0.0417 (15)0.0008 (15)0.0164 (15)0.0018 (12)
C120.072 (2)0.0354 (14)0.0442 (15)0.0002 (14)0.0039 (14)0.0020 (12)
C130.0496 (16)0.0326 (12)0.0409 (14)0.0045 (12)0.0028 (12)0.0045 (11)
C140.0376 (15)0.0333 (13)0.0360 (13)0.0047 (11)0.0001 (11)0.0012 (10)
C150.0455 (15)0.0320 (13)0.0386 (14)0.0008 (12)0.0000 (12)0.0002 (10)
C160.0531 (17)0.0391 (13)0.0369 (15)0.0019 (12)0.0018 (13)0.0053 (11)
C170.0539 (18)0.0473 (16)0.0337 (14)0.0013 (13)0.0002 (12)0.0019 (11)
C180.071 (2)0.0391 (14)0.0393 (15)0.0096 (14)0.0006 (14)0.0016 (11)
C190.0597 (18)0.0343 (13)0.0389 (14)0.0044 (13)0.0030 (13)0.0052 (11)
Cl10.1075 (7)0.0377 (4)0.0426 (4)0.0179 (4)0.0048 (4)0.0013 (3)
Cl20.1003 (7)0.0616 (5)0.0335 (3)0.0178 (5)0.0003 (4)0.0039 (3)
F10.1121 (16)0.0465 (10)0.0345 (8)0.0205 (9)0.0113 (9)0.0066 (7)
N10.0418 (12)0.0311 (11)0.0324 (11)0.0014 (10)0.0018 (9)0.0032 (9)
N20.0378 (12)0.0305 (10)0.0339 (10)0.0014 (9)0.0006 (9)0.0019 (8)
N30.0485 (13)0.0323 (11)0.0360 (11)0.0002 (10)0.0022 (10)0.0010 (9)
O10.0608 (13)0.0492 (11)0.0479 (11)0.0115 (10)0.0109 (10)0.0004 (8)
Geometric parameters (Å, º) top
O2—H210.935 (18)C11—H11A0.97
O2—H221.004 (18)C11—H11B0.97
C2—N31.321 (3)C12—O11.415 (3)
C2—N11.363 (3)C12—C131.516 (3)
C2—C141.476 (3)C12—H12A0.97
C4—C51.356 (4)C12—H12B0.97
C4—C91.404 (3)C13—N21.461 (3)
C4—H40.93C13—H13A0.97
C5—F11.367 (3)C13—H13B0.97
C5—C61.413 (3)C14—C191.397 (4)
C6—C71.389 (3)C14—C151.399 (3)
C6—N21.425 (3)C15—C161.387 (3)
C7—C81.397 (3)C15—Cl11.741 (3)
C7—H70.93C16—C171.375 (4)
C8—N11.377 (3)C16—H160.93
C8—C91.386 (3)C17—C181.377 (4)
C9—N31.385 (3)C17—Cl21.732 (2)
C10—N21.481 (3)C18—C191.376 (4)
C10—C111.515 (4)C18—H180.93
C10—H10A0.97C19—H190.93
C10—H10B0.97N1—H10.927 (18)
C11—O11.413 (3)
H21—O2—H22123 (3)C13—C12—H12A109.1
N3—C2—N1112.3 (2)O1—C12—H12B109.1
N3—C2—C14120.9 (2)C13—C12—H12B109.1
N1—C2—C14126.8 (2)H12A—C12—H12B107.8
C5—C4—C9116.3 (2)N2—C13—C12109.7 (2)
C5—C4—H4121.9N2—C13—H13A109.7
C9—C4—H4121.9C12—C13—H13A109.7
C4—C5—F1117.5 (2)N2—C13—H13B109.7
C4—C5—C6125.6 (2)C12—C13—H13B109.7
F1—C5—C6116.8 (2)H13A—C13—H13B108.2
C7—C6—C5117.4 (2)C19—C14—C15115.9 (2)
C7—C6—N2124.0 (2)C19—C14—C2116.4 (2)
C5—C6—N2118.5 (2)C15—C14—C2127.7 (2)
C6—C7—C8117.8 (2)C16—C15—C14122.3 (2)
C6—C7—H7121.1C16—C15—Cl1115.72 (19)
C8—C7—H7121.1C14—C15—Cl1121.95 (19)
N1—C8—C9105.1 (2)C17—C16—C15118.8 (2)
N1—C8—C7131.7 (2)C17—C16—H16120.6
C9—C8—C7123.2 (2)C15—C16—H16120.6
N3—C9—C8110.5 (2)C16—C17—C18121.4 (2)
N3—C9—C4129.8 (2)C16—C17—Cl2119.4 (2)
C8—C9—C4119.7 (2)C18—C17—Cl2119.2 (2)
N2—C10—C11108.8 (2)C19—C18—C17118.7 (2)
N2—C10—H10A109.9C19—C18—H18120.7
C11—C10—H10A109.9C17—C18—H18120.7
N2—C10—H10B109.9C18—C19—C14122.9 (2)
C11—C10—H10B109.9C18—C19—H19118.5
H10A—C10—H10B108.3C14—C19—H19118.5
O1—C11—C10111.7 (2)C2—N1—C8107.31 (19)
O1—C11—H11A109.3C2—N1—H1129.8 (17)
C10—C11—H11A109.3C8—N1—H1122.4 (17)
O1—C11—H11B109.3C6—N2—C13115.07 (18)
C10—C11—H11B109.3C6—N2—C10113.62 (19)
H11A—C11—H11B107.9C13—N2—C10108.3 (2)
O1—C12—C13112.6 (2)C2—N3—C9104.77 (19)
O1—C12—H12A109.1C11—O1—C12109.3 (2)
C9—C4—C5—F1176.9 (2)Cl1—C15—C16—C17179.4 (2)
C9—C4—C5—C60.6 (4)C15—C16—C17—C180.4 (4)
C4—C5—C6—C70.1 (4)C15—C16—C17—Cl2179.8 (2)
F1—C5—C6—C7177.3 (2)C16—C17—C18—C190.4 (4)
C4—C5—C6—N2176.5 (3)Cl2—C17—C18—C19179.9 (2)
F1—C5—C6—N21.0 (4)C17—C18—C19—C140.0 (4)
C5—C6—C7—C80.2 (4)C15—C14—C19—C180.5 (4)
N2—C6—C7—C8176.0 (2)C2—C14—C19—C18179.5 (2)
C6—C7—C8—N1178.8 (2)N3—C2—N1—C80.7 (3)
C6—C7—C8—C90.0 (4)C14—C2—N1—C8179.7 (2)
N1—C8—C9—N30.9 (3)C9—C8—N1—C21.0 (3)
C7—C8—C9—N3178.1 (2)C7—C8—N1—C2178.0 (3)
N1—C8—C9—C4179.5 (2)C7—C6—N2—C1310.1 (3)
C7—C8—C9—C40.5 (4)C5—C6—N2—C13166.0 (2)
C5—C4—C9—N3177.6 (3)C7—C6—N2—C10115.6 (3)
C5—C4—C9—C80.7 (4)C5—C6—N2—C1068.3 (3)
N2—C10—C11—O160.6 (3)C12—C13—N2—C6174.4 (2)
O1—C12—C13—N257.9 (3)C12—C13—N2—C1057.2 (3)
N3—C2—C14—C190.3 (4)C11—C10—N2—C6172.2 (2)
N1—C2—C14—C19178.6 (2)C11—C10—N2—C1358.6 (3)
N3—C2—C14—C15179.2 (2)N1—C2—N3—C90.1 (3)
N1—C2—C14—C150.2 (4)C14—C2—N3—C9179.2 (2)
C19—C14—C15—C160.6 (4)C8—C9—N3—C20.5 (3)
C2—C14—C15—C16179.4 (3)C4—C9—N3—C2178.9 (3)
C19—C14—C15—Cl1179.0 (2)C10—C11—O1—C1259.0 (3)
C2—C14—C15—Cl10.1 (4)C13—C12—O1—C1157.6 (3)
C14—C15—C16—C170.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.93 (2)2.45 (3)3.029 (2)121 (2)
C19—H19···N30.932.412.776 (3)104
C10—H10B···F10.972.342.944 (3)120
N1—H1···O2i0.93 (2)2.18 (2)2.986 (3)145 (2)
O2—H21···N30.93 (2)2.07 (2)3.002 (3)172 (3)
O2—H22···N2ii1.00 (2)2.07 (3)3.057 (3)168 (4)
C12—H12A···F1i0.972.383.257 (3)150
C12—H12A···Cl2iii0.972.783.408 (3)123
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC17H14Cl2FN3O·H2O
Mr384.23
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)7.4455 (7), 15.310 (3), 29.487 (3)
V3)3361.2 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.48 × 0.36 × 0.24
Data collection
DiffractometerEnraf-Nonius TurboCAD4
diffractometer
Absorption correctionPsi scan (North et al., 1968)
Tmin, Tmax0.826, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
3893, 3403, 2174
Rint0.079
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.106, 1.02
No. of reflections3403
No. of parameters238
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.32

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXL97 (Sheldrick, 1997), ORTEP (Johnson, 1965), PLATON (Spek, 2000).

Selected geometric parameters (Å, º) top
C2—N31.321 (3)C6—N21.425 (3)
C2—N11.363 (3)C15—Cl11.741 (3)
C2—C141.476 (3)C17—Cl21.732 (2)
C5—F11.367 (3)
N3—C2—N1112.3 (2)O1—C12—C13112.6 (2)
N3—C2—C14120.9 (2)N2—C13—C12109.7 (2)
N1—C2—C14126.8 (2)C19—C14—C2116.4 (2)
C4—C5—F1117.5 (2)C14—C15—Cl1121.95 (19)
C5—C6—N2118.5 (2)C16—C17—Cl2119.4 (2)
N1—C8—C9105.1 (2)C2—N1—C8107.31 (19)
N3—C9—C8110.5 (2)C13—N2—C10108.3 (2)
N2—C10—C11108.8 (2)C2—N3—C9104.77 (19)
O1—C11—C10111.7 (2)C11—O1—C12109.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.93 (2)2.45 (3)3.029 (2)120.5 (19)
C19—H19···N30.93002.40502.776 (3)103.68
C10—H10B···F10.97002.34272.944 (3)119.49
N1—H1···O2i0.93 (2)2.18 (2)2.986 (3)145 (2)
O2—H21···N30.93 (2)2.07 (2)3.002 (3)172 (3)
O2—H22···N2ii1.00 (2)2.07 (3)3.057 (3)168 (4)
C12—H12A···F1i0.97002.37903.257 (3)150.22
C12—H12A···Cl2iii0.97002.78083.408 (3)123.05
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y, z; (iii) x, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds