Download citation
Download citation
link to html
The cationic components, [Ni(C9H30N6)]2+, of the title compound [Ni(C9H30N6)](BF4)2 or Ni(pn)3(BF4)2 (pn is 1,3-di­amino­propane), are stacked in the crystal via hydrogen bonding (N—H...F). The geometry around the NiII atom is distorted octahedral, with an average Ni—N bond distance of 2.14 (2) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802014113/cv6130sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802014113/cv6130Isup2.hkl
Contains datablock I

CCDC reference: 197444

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.011 Å
  • Disorder in solvent or counterion
  • R factor = 0.059
  • wR factor = 0.139
  • Data-to-parameter ratio = 11.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_302 Alert C Anion/Solvent Disorder ....................... 44.00 Perc. PLAT_420 Alert C D-H Without Acceptor N(1) - H(1A) ? PLAT_420 Alert C D-H Without Acceptor N(6) - H(6A) ? PLAT_420 Alert C D-H Without Acceptor N(10) - H(10A) ? PLAT_420 Alert C D-H Without Acceptor N(11) - H(11B) ? PLAT_420 Alert C D-H Without Acceptor N(15) - H(15A) ? General Notes
ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 1.093 Tmax scaled 0.810 Tmin scaled 0.715
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
6 Alert Level C = Please check

Comment top

The title compound, (I), was obtained in attempt to prepare the analogous compounds [Ni(en)2ClO4](ClO4) and [Ni(en)2ClO4](PF6) (en is ethylenediamine) (Landee et al., 1997). These compounds contain chains of nitrito-bridged nickel(II). These chains of S = 1 ions exhibit antiferromagnetic exchange coupling (Meyer et al., 1982). Accordingly, they are ideal candidates for investigating the conjecture by Haldane that integer spin antiferromagnetic chains exhibit an energy gap between the nonmagnetic singlet ground state and the lowest lying excited state (Haldane, 1983).

In the title compound, the average Ni—N bond distance is 2.140 (24) Å, with N—Ni—N chelate bite angles ranging from 86.57 (18) to 88.6 (2)°. Furthermore, the trans angles are different from the typical octahedral angle 174.2 (2)–179.0 (2)°. The structure is different from the corresponding nitrate structure (Vezzosi et al., 1985). The three six-membered rings are similar to each other, with chair conformations, as shown in Fig. 1. The Ni—N—C and N—C—C angles are close in value, with ranges of 120.5 (4)–123.6 (4) and 112.7 (6)–116.2 (6)°, respectively. The analogous nitrate structure shows a pronounced flattening in one of the six-membered rings, as indicated by wider ranges of the above angles of 114 (1)–128 (1) and 113 (1)–127 (2)°, respectively. N—H···F hydrogen bonds stabilize the packing of the formula units in the crystal. The two tetrafluoroborate anions are disordered, as reflected by the large displacement ellipsoids of the F atoms.

Experimental top

1,3-Diaminopropane (32.2 mmol) was added slowly to a solution of Ni(BF4)2 (10.6 mmol) in water. To this solution, Ni(BF4)2 (10.6 mmol) and NaSCN (10.6 mmol) were added. Slow evaporation leads to the formation of purple crystals.

Refinement top

The two tetrafluoroborate anions were found disordered and were refined in sets (set 1: F1, F2, F3 and F4; set 2: F1', F2', F3' and F4'; set 3: F11, F12, F13 and F14; set 4: F11', F12', F13' and F14'). They were refined to partial occupancies of 0.571 (18), 0.429 (18), 0.533 (16) and 0.467 (16), respectively. The B—F bond lengths of each tetrafluoroborate anoion were restrained to the same value, and the F···F distances were restarained to be 1.633 times the corresponding B—F bond lengths.

Computing details top

Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 1996); program(s) used to solve structure: XS in SHELXTL; program(s) used to refine structure: XL in SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: XCIF in SHELXTL.

Figures top
[Figure 1] Fig. 1. Drawing of the cationic part of (I), with 50% displacement ellipsoids.
Tris(propane-1,3-diamine)nickel(II) tetrafluoroborate. top
Crystal data top
[Ni(C9H30N6)](BF4)2Dx = 1.516 Mg m3
Mr = 454.72Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 36 reflections
a = 15.2751 (14) Åθ = 2.4–16.0°
b = 15.498 (2) ŵ = 1.05 mm1
c = 16.835 (2) ÅT = 298 K
V = 3985.6 (8) Å3Chunk, purple
Z = 80.4 × 0.3 × 0.2 mm
F(000) = 1888
Data collection top
Siemens P21 upgraded to P4
diffractometer
1657 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.048
Graphite monochromatorθmax = 25.3°, θmin = 2.2°
ω scansh = 018
Absorption correction: ψ scan
(XPREP in SHELXTL; Bruker, 1996)
k = 018
Tmin = 0.654, Tmax = 0.742l = 020
4877 measured reflections3 standard reflections every 100 reflections
3503 independent reflections intensity decay: no decay was observed
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.8993P]
where P = (Fo2 + 2Fc2)/3
3503 reflections(Δ/σ)max < 0.001
311 parametersΔρmax = 0.31 e Å3
142 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Ni(C9H30N6)](BF4)2V = 3985.6 (8) Å3
Mr = 454.72Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.2751 (14) ŵ = 1.05 mm1
b = 15.498 (2) ÅT = 298 K
c = 16.835 (2) Å0.4 × 0.3 × 0.2 mm
Data collection top
Siemens P21 upgraded to P4
diffractometer
1657 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XPREP in SHELXTL; Bruker, 1996)
Rint = 0.048
Tmin = 0.654, Tmax = 0.7423 standard reflections every 100 reflections
4877 measured reflections intensity decay: no decay was observed
3503 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059142 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.00Δρmax = 0.31 e Å3
3503 reflectionsΔρmin = 0.22 e Å3
311 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F110.2036 (6)0.4730 (11)0.2484 (12)0.169 (9)0.533 (16)
F120.0839 (10)0.5213 (11)0.3073 (8)0.193 (8)0.533 (16)
F130.0978 (10)0.5372 (9)0.1828 (8)0.161 (7)0.533 (16)
F140.0818 (9)0.4081 (7)0.2290 (11)0.149 (6)0.533 (16)
F11'0.1335 (11)0.5735 (6)0.2424 (11)0.153 (7)0.467 (16)
F12'0.1925 (10)0.4531 (11)0.1993 (11)0.153 (7)0.467 (16)
F13'0.1432 (12)0.4609 (8)0.3177 (7)0.140 (7)0.467 (16)
F14'0.0526 (9)0.4591 (16)0.2164 (13)0.212 (12)0.467 (16)
F10.0880 (10)0.7549 (6)0.3658 (9)0.136 (7)0.571 (18)
F20.1863 (8)0.8101 (9)0.4403 (11)0.162 (9)0.571 (18)
F30.0613 (7)0.8672 (11)0.4430 (10)0.145 (6)0.571 (18)
F40.1386 (16)0.8824 (12)0.3410 (7)0.214 (10)0.571 (18)
F1'0.0771 (10)0.9009 (7)0.3815 (17)0.143 (9)0.429 (18)
F2'0.139 (2)0.8212 (13)0.4708 (9)0.187 (12)0.429 (18)
F3'0.1779 (14)0.8135 (15)0.3497 (16)0.214 (10)0.429 (18)
F4'0.0532 (15)0.7649 (12)0.3870 (15)0.204 (14)0.429 (18)
B10.1149 (5)0.8266 (6)0.3959 (5)0.082 (2)
B20.1243 (7)0.4857 (6)0.2428 (6)0.106 (3)
Ni0.37602 (4)0.67037 (4)0.33755 (4)0.0517 (2)
N10.4308 (3)0.5881 (3)0.4260 (3)0.0691 (14)
H1A0.43560.53510.40450.083*
H1B0.48560.60680.43550.083*
N50.2521 (3)0.6288 (3)0.3788 (3)0.0700 (14)
H5A0.21390.67080.36610.084*
H5B0.23750.58260.34920.084*
N60.3814 (3)0.5629 (3)0.2542 (3)0.0770 (14)
H6A0.42890.53150.26670.092*
H6B0.33440.52940.26390.092*
N100.3092 (4)0.7449 (4)0.2480 (3)0.0937 (18)
H10A0.25150.73800.25660.112*
H10B0.32140.80060.25790.112*
N110.4990 (3)0.7140 (3)0.2968 (3)0.0792 (15)
H11A0.52650.66830.27520.095*
H11B0.48890.75160.25710.095*
N150.3738 (3)0.7833 (3)0.4120 (3)0.0791 (14)
H15A0.35230.82680.38230.095*
H15B0.33440.77330.45070.095*
C20.3878 (5)0.5779 (5)0.5031 (4)0.102 (2)
H2A0.38620.63340.52980.122*
H2B0.42190.53870.53570.122*
C30.2967 (5)0.5440 (5)0.4960 (5)0.115 (3)
H3A0.29770.49220.46360.138*
H3B0.27600.52780.54840.138*
C40.2344 (4)0.6056 (5)0.4610 (4)0.101 (2)
H4A0.17600.58110.46400.121*
H4B0.23460.65780.49280.121*
C70.3841 (5)0.5779 (5)0.1676 (4)0.105 (2)
H7A0.44160.59960.15350.126*
H7B0.37610.52310.14060.126*
C80.3176 (6)0.6390 (6)0.1389 (4)0.118 (3)
H8A0.26080.61760.15580.141*
H8B0.31820.63710.08130.141*
C90.3234 (5)0.7315 (6)0.1632 (5)0.108 (3)
H9A0.38080.75350.14910.129*
H9B0.28020.76440.13380.129*
C120.5592 (4)0.7540 (6)0.3501 (4)0.105 (3)
H12A0.60980.77270.31990.126*
H12B0.57920.71080.38770.126*
C130.5249 (4)0.8301 (5)0.3963 (5)0.095 (2)
H13A0.57290.85350.42740.114*
H13B0.50770.87420.35850.114*
C140.4514 (5)0.8150 (5)0.4497 (4)0.109 (3)
H14A0.46940.77390.48990.131*
H14B0.43750.86870.47650.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F110.058 (7)0.176 (13)0.27 (3)0.003 (7)0.056 (10)0.028 (15)
F120.171 (13)0.230 (19)0.177 (13)0.018 (12)0.038 (11)0.055 (14)
F130.188 (14)0.143 (12)0.150 (12)0.057 (10)0.030 (9)0.050 (10)
F140.143 (13)0.111 (8)0.193 (11)0.050 (8)0.015 (10)0.000 (8)
F11'0.176 (13)0.110 (9)0.172 (16)0.001 (9)0.048 (11)0.017 (9)
F12'0.136 (15)0.150 (13)0.172 (15)0.012 (11)0.001 (11)0.006 (11)
F13'0.194 (18)0.120 (10)0.106 (9)0.027 (10)0.036 (10)0.026 (8)
F14'0.092 (10)0.30 (3)0.25 (2)0.029 (16)0.041 (11)0.05 (3)
F10.148 (12)0.105 (9)0.155 (12)0.027 (8)0.078 (11)0.053 (8)
F20.082 (7)0.136 (9)0.27 (2)0.049 (6)0.046 (9)0.078 (12)
F30.114 (8)0.170 (12)0.153 (12)0.030 (8)0.067 (8)0.002 (9)
F40.30 (2)0.200 (18)0.144 (10)0.042 (17)0.068 (12)0.084 (11)
F1'0.109 (11)0.081 (9)0.24 (3)0.054 (9)0.005 (13)0.006 (13)
F2'0.32 (3)0.148 (16)0.090 (9)0.04 (2)0.060 (17)0.038 (10)
F3'0.179 (15)0.22 (2)0.25 (2)0.099 (15)0.147 (15)0.080 (17)
F4'0.19 (2)0.19 (2)0.23 (2)0.114 (18)0.039 (16)0.028 (18)
B10.057 (5)0.082 (6)0.106 (7)0.008 (6)0.013 (6)0.004 (7)
B20.087 (8)0.127 (10)0.103 (9)0.049 (10)0.024 (8)0.015 (9)
Ni0.0461 (4)0.0546 (4)0.0544 (4)0.0046 (4)0.0040 (4)0.0020 (4)
N10.053 (3)0.082 (3)0.072 (3)0.009 (3)0.005 (3)0.009 (3)
N50.052 (3)0.076 (3)0.082 (3)0.003 (3)0.000 (3)0.006 (3)
N60.074 (3)0.079 (3)0.079 (4)0.005 (3)0.010 (3)0.013 (3)
N100.094 (4)0.104 (4)0.082 (4)0.018 (4)0.001 (3)0.023 (3)
N110.062 (3)0.090 (4)0.086 (4)0.006 (3)0.018 (3)0.001 (3)
N150.067 (3)0.075 (3)0.095 (4)0.003 (3)0.006 (3)0.017 (3)
C20.103 (6)0.130 (6)0.073 (5)0.022 (5)0.002 (5)0.031 (5)
C30.098 (6)0.116 (6)0.131 (7)0.011 (5)0.049 (6)0.053 (6)
C40.075 (5)0.121 (6)0.106 (6)0.000 (5)0.036 (4)0.011 (5)
C70.115 (6)0.139 (6)0.060 (4)0.004 (6)0.020 (5)0.023 (5)
C80.140 (8)0.145 (8)0.069 (5)0.016 (7)0.011 (5)0.011 (5)
C90.114 (6)0.133 (7)0.075 (5)0.010 (6)0.000 (5)0.033 (6)
C120.052 (4)0.163 (8)0.102 (6)0.012 (5)0.009 (4)0.005 (6)
C130.065 (4)0.098 (5)0.121 (6)0.021 (4)0.018 (5)0.000 (6)
C140.098 (6)0.136 (7)0.093 (5)0.014 (5)0.010 (5)0.042 (5)
Geometric parameters (Å, º) top
F11—B21.231 (12)N10—H10A0.9000
F12—B21.366 (12)N10—H10B0.9000
F13—B21.351 (12)N11—C121.427 (8)
F14—B21.386 (12)N11—H11A0.9000
F11'—B21.369 (12)N11—H11B0.9000
F12'—B21.370 (14)N15—C141.432 (8)
F13'—B21.349 (12)N15—H15A0.9000
F14'—B21.252 (13)N15—H15B0.9000
F1—B11.290 (11)C2—C31.492 (9)
F2—B11.347 (11)C2—H2A0.9700
F3—B11.301 (11)C2—H2B0.9700
F4—B11.316 (11)C3—C41.472 (9)
F1'—B11.310 (12)C3—H3A0.9700
F2'—B11.315 (12)C3—H3B0.9700
F3'—B11.255 (12)C4—H4A0.9700
F4'—B11.352 (14)C4—H4B0.9700
Ni—N112.111 (5)C7—C81.471 (10)
Ni—N52.116 (5)C7—H7A0.9700
Ni—N12.132 (4)C7—H7B0.9700
Ni—N152.153 (4)C8—C91.494 (10)
Ni—N102.156 (5)C8—H8A0.9700
Ni—N62.179 (4)C8—H8B0.9700
N1—C21.464 (7)C9—H9A0.9700
N1—H1A0.9000C9—H9B0.9700
N1—H1B0.9000C12—C131.507 (9)
N5—C41.455 (7)C12—H12A0.9700
N5—H5A0.9000C12—H12B0.9700
N5—H5B0.9000C13—C141.458 (9)
N6—C71.477 (7)C13—H13A0.9700
N6—H6A0.9000C13—H13B0.9700
N6—H6B0.9000C14—H14A0.9700
N10—C91.459 (8)C14—H14B0.9700
F3'—B1—F182.0 (15)Ni—N5—H5B106.4
F3'—B1—F3159.8 (14)H5A—N5—H5B106.5
F1—B1—F3117.2 (10)C7—N6—Ni121.1 (4)
F3'—B1—F1'111.4 (12)C7—N6—H6A107.0
F1—B1—F1'123.0 (11)Ni—N6—H6A107.0
F3—B1—F1'53.9 (9)C7—N6—H6B107.0
F3'—B1—F2'111.9 (13)Ni—N6—H6B107.0
F1—B1—F2'114.2 (12)H6A—N6—H6B106.8
F3—B1—F2'67.7 (12)C9—N10—Ni122.6 (5)
F1'—B1—F2'110.8 (12)C9—N10—H10A106.7
F3'—B1—F457.3 (9)Ni—N10—H10A106.7
F1—B1—F4112.2 (10)C9—N10—H10B106.7
F3—B1—F4106.5 (10)Ni—N10—H10B106.7
F1'—B1—F454.2 (9)H10A—N10—H10B106.6
F2'—B1—F4129.8 (13)C12—N11—Ni120.5 (4)
F3'—B1—F272.0 (11)C12—N11—H11A107.2
F1—B1—F2108.1 (10)Ni—N11—H11A107.2
F3—B1—F2105.3 (9)C12—N11—H11B107.2
F1'—B1—F2128.8 (11)Ni—N11—H11B107.2
F2'—B1—F239.9 (12)H11A—N11—H11B106.8
F4—B1—F2107.0 (10)C14—N15—Ni121.6 (4)
F3'—B1—F4'110.5 (13)C14—N15—H15A106.9
F1—B1—F4'28.7 (13)Ni—N15—H15A106.9
F3—B1—F4'88.4 (13)C14—N15—H15B106.9
F1'—B1—F4'107.1 (12)Ni—N15—H15B106.9
F2'—B1—F4'104.7 (12)H15A—N15—H15B106.7
F4—B1—F4'125.3 (14)N1—C2—C3112.7 (6)
F2—B1—F4'119.4 (14)N1—C2—H2A109.1
F11—B2—F14'146.7 (14)C3—C2—H2A109.1
F11—B2—F13'70.9 (11)N1—C2—H2B109.1
F14'—B2—F13'115.2 (14)C3—C2—H2B109.1
F11—B2—F13116.5 (13)H2A—C2—H2B107.8
F14'—B2—F1370.5 (12)C4—C3—C2114.0 (6)
F13'—B2—F13158.8 (11)C4—C3—H3A108.8
F11—B2—F12116.7 (12)C2—C3—H3A108.8
F14'—B2—F1291.2 (13)C4—C3—H3B108.8
F13'—B2—F1257.9 (8)C2—C3—H3B108.8
F13—B2—F12102.7 (11)H3A—C3—H3B107.7
F11—B2—F11'93.4 (12)N5—C4—C3114.9 (6)
F14'—B2—F11'114.5 (13)N5—C4—H4A108.5
F13'—B2—F11'105.4 (10)C3—C4—H4A108.5
F13—B2—F11'55.9 (8)N5—C4—H4B108.5
F12—B2—F11'69.4 (9)C3—C4—H4B108.5
F11—B2—F12'39.9 (8)H4A—C4—H4B107.5
F14'—B2—F12'110.8 (12)C8—C7—N6113.9 (6)
F13'—B2—F12'103.4 (11)C8—C7—H7A108.8
F13—B2—F12'92.6 (11)N6—C7—H7A108.8
F12—B2—F12'156.6 (12)C8—C7—H7B108.8
F11'—B2—F12'106.6 (11)N6—C7—H7B108.8
F11—B2—F14109.6 (11)H7A—C7—H7B107.7
F14'—B2—F1441.0 (10)C7—C8—C9119.1 (7)
F13'—B2—F1490.6 (11)C7—C8—H8A107.5
F13—B2—F14104.3 (11)C9—C8—H8A107.5
F12—B2—F14105.8 (11)C7—C8—H8B107.5
F11'—B2—F14155.5 (12)C9—C8—H8B107.5
F12'—B2—F1487.0 (12)H8A—C8—H8B107.0
N11—Ni—N5179.0 (2)N10—C9—C8113.2 (7)
N11—Ni—N193.95 (19)N10—C9—H9A108.9
N5—Ni—N186.57 (18)C8—C9—H9A108.9
N11—Ni—N1586.74 (19)N10—C9—H9B108.9
N5—Ni—N1592.43 (19)C8—C9—H9B108.9
N1—Ni—N1594.94 (19)H9A—C9—H9B107.7
N11—Ni—N1091.3 (2)N11—C12—C13116.2 (6)
N5—Ni—N1088.2 (2)N11—C12—H12A108.2
N1—Ni—N10174.2 (2)C13—C12—H12A108.2
N15—Ni—N1087.9 (2)N11—C12—H12B108.2
N11—Ni—N690.11 (19)C13—C12—H12B108.2
N5—Ni—N690.70 (19)H12A—C12—H12B107.4
N1—Ni—N688.75 (18)C14—C13—C12117.4 (6)
N15—Ni—N6175.30 (19)C14—C13—H13A108.0
N10—Ni—N688.6 (2)C12—C13—H13A108.0
C2—N1—Ni120.5 (4)C14—C13—H13B108.0
C2—N1—H1A107.2C12—C13—H13B108.0
Ni—N1—H1A107.2H13A—C13—H13B107.2
C2—N1—H1B107.2N15—C14—C13114.8 (6)
Ni—N1—H1B107.2N15—C14—H14A108.6
H1A—N1—H1B106.8C13—C14—H14A108.6
C4—N5—Ni123.6 (4)N15—C14—H14B108.6
C4—N5—H5A106.4C13—C14—H14B108.6
Ni—N5—H5A106.4H14A—C14—H14B107.5
C4—N5—H5B106.4
N11—Ni—N1—C2143.1 (5)N10—Ni—N11—C12125.6 (6)
N5—Ni—N1—C236.1 (5)N6—Ni—N11—C12145.8 (5)
N15—Ni—N1—C256.1 (5)N11—Ni—N15—C1437.7 (5)
N6—Ni—N1—C2126.9 (5)N5—Ni—N15—C14142.8 (5)
N1—Ni—N5—C431.9 (5)N1—Ni—N15—C1456.0 (5)
N15—Ni—N5—C462.9 (5)N10—Ni—N15—C14129.1 (5)
N10—Ni—N5—C4150.8 (6)Ni—N1—C2—C359.2 (8)
N6—Ni—N5—C4120.6 (5)N1—C2—C3—C469.8 (9)
N11—Ni—N6—C762.3 (5)Ni—N5—C4—C350.3 (9)
N5—Ni—N6—C7117.1 (5)C2—C3—C4—N564.6 (9)
N1—Ni—N6—C7156.3 (5)Ni—N6—C7—C848.7 (8)
N10—Ni—N6—C728.9 (5)N6—C7—C8—C966.8 (10)
N11—Ni—N10—C960.3 (6)Ni—N10—C9—C849.1 (9)
N5—Ni—N10—C9120.5 (6)C7—C8—C9—N1066.6 (10)
N15—Ni—N10—C9147.0 (6)Ni—N11—C12—C1354.4 (8)
N6—Ni—N10—C929.7 (6)N11—C12—C13—C1461.4 (9)
N1—Ni—N11—C1257.0 (6)Ni—N15—C14—C1353.5 (9)
N15—Ni—N11—C1237.7 (5)C12—C13—C14—N1560.0 (9)

Experimental details

Crystal data
Chemical formula[Ni(C9H30N6)](BF4)2
Mr454.72
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)15.2751 (14), 15.498 (2), 16.835 (2)
V3)3985.6 (8)
Z8
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerSiemens P21 upgraded to P4
diffractometer
Absorption correctionψ scan
(XPREP in SHELXTL; Bruker, 1996)
Tmin, Tmax0.654, 0.742
No. of measured, independent and
observed [I > 2σ(I)] reflections
4877, 3503, 1657
Rint0.048
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.139, 1.00
No. of reflections3503
No. of parameters311
No. of restraints142
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.22

Computer programs: XSCANS (Bruker, 1996), XSCANS, SHELXTL (Bruker, 1996), XS in SHELXTL, XL in SHELXTL, XP in SHELXTL, XCIF in SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds