Download citation
Download citation
link to html
The title compound, C30H25NO2S, contains an isoxazolidine ring in a twist conformation with the spiro-C [0.404 (2) Å] and the adjacent C atom [0.266 (2) Å] deviating from the plane of the remaining three atoms. The thia­pyran ring adopts a sofa conformation, with the five C atoms in a common plane (r.m.s.d. = 0.033 Å) and the S atom deviating by 0.984 (2) Å from this plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802002994/cv6090sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802002994/cv6090Isup2.hkl
Contains datablock I

CCDC reference: 182632

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.039
  • wR factor = 0.099
  • Data-to-parameter ratio = 13.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

The dipolar 1,3-cycloaddition reaction between alcenes and nitrones is an important method for producing isoxazolidines, which can be easily converted to different compounds, as reported in the literature (Gothelf & Jorgensen, 1994; Broggini & Zecchi, 1997; Coutouli-Argyropoulou et al., 1997). The present work is a contribution to these investigations, focusing on the dipole–dipolarophile approach in dipolar 1,3-cycloaddition reactions. The case in which the dipolarophilic site is inserted into different cyclic systems (Tshiamala et al., 1988; Kerbal et al., 1989; Filali Baba et al., 2000) or non-cyclic systems (Kerbal et al., 1988, 1991) has already been studied. After having explored the reaction between diphenylnitrilimines (DANI) and 3-arylidenisothiochroman-4-ones (Badri et al., 1999), we investigated the effects of the former on nitrones. In this case, the reaction is regiospecific and leads to spiro products. The synthesis of 2-arylideneisothiochroman-4-ones by condensation of para-substituted benzaldehyde with isothiochroman-4-one in an acidic medium has been accomplished according to reported procedures (Kerbal et al., 1990; Riahi et al., 1998) (see Scheme). Since NMR spectroscopy did not provide sufficient information about the nature of the reaction product we have carried out the X-ray structure analysis of the title compound, (I). The oxazolidine ring shows a twist conformation with C1 [0.404 (2) Å] and C5 [0.266 (2) Å] deviating from the plane of the remaining three atoms. The thiapyran ring adopts a sofa conformation, with the five C atoms in a common plane (r.m.s.d. = 0.033 Å) and the S atom deviating by 0.984 (2) Å from this plane.

Experimental top

The title compound was prepared according to Badri et al. (1999). Crystals were grown from an ethanol solution.

Refinement top

All H atoms were located by difference Fourier synthesis and refined with fixed individual displacement parameters [Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl)] using a riding model with tertiary C—H = 1.00 Å, secondary C—H = 0.99 Å, methyl C—H = 0.98 Å and aromatic C—H = 0.95 Å. The methyl group was allowed to rotate about its local threefold axes.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Sheldrick, 1991).

Figures top
[Figure 1] Fig. 1. A perspective view of the title compound with the atom-numbering scheme. Displacement ellipsoids are at the 50% probability level.
; top
Crystal data top
C30H25NO2SZ = 2
Mr = 463.57F(000) = 488
Triclinic, P1Dx = 1.326 Mg m3
a = 9.6687 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.2722 (3) ÅCell parameters from 6557 reflections
c = 11.5579 (3) Åθ = 1–25°
α = 78.850 (2)°µ = 0.17 mm1
β = 73.486 (2)°T = 173 K
γ = 75.860 (2)°Block, colourless
V = 1160.66 (5) Å30.41 × 0.36 × 0.18 mm
Data collection top
Siemens CCD three-circle
diffractometer
4250 independent reflections
Radiation source: fine-focus sealed tube3575 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ω scansθmax = 25.4°, θmin = 1.9°
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.934, Tmax = 0.970k = 1313
22101 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.6774P]
where P = (Fo2 + 2Fc2)/3
4250 reflections(Δ/σ)max = 0.010
308 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C30H25NO2Sγ = 75.860 (2)°
Mr = 463.57V = 1160.66 (5) Å3
Triclinic, P1Z = 2
a = 9.6687 (2) ÅMo Kα radiation
b = 11.2722 (3) ŵ = 0.17 mm1
c = 11.5579 (3) ÅT = 173 K
α = 78.850 (2)°0.41 × 0.36 × 0.18 mm
β = 73.486 (2)°
Data collection top
Siemens CCD three-circle
diffractometer
4250 independent reflections
Absorption correction: empirical
(SADABS; Sheldrick, 1996)
3575 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.970Rint = 0.033
22101 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
4250 reflectionsΔρmin = 0.26 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18497 (5)0.63967 (4)0.30862 (4)0.02792 (13)
C10.34960 (19)0.68394 (16)0.32057 (16)0.0236 (4)
O20.39073 (13)0.62759 (11)0.43116 (11)0.0259 (3)
N30.30182 (16)0.70453 (13)0.52489 (13)0.0242 (3)
C40.24118 (19)0.82587 (15)0.46403 (15)0.0234 (4)
H40.13380.83230.47260.028*
C50.32493 (19)0.82168 (16)0.32870 (15)0.0236 (4)
H50.42380.84000.31990.028*
O60.56531 (15)0.70614 (12)0.16316 (12)0.0372 (3)
C60.4810 (2)0.63752 (17)0.21676 (16)0.0263 (4)
C70.5012 (2)0.51196 (17)0.18483 (16)0.0282 (4)
C80.6290 (2)0.47039 (19)0.09726 (18)0.0347 (5)
H80.69940.52160.06290.042*
C90.6543 (2)0.3557 (2)0.06009 (19)0.0412 (5)
H90.74090.32870.00000.049*
C100.5525 (3)0.2806 (2)0.1111 (2)0.0431 (5)
H100.56940.20180.08590.052*
C110.4258 (2)0.31984 (18)0.19874 (19)0.0376 (5)
H110.35710.26720.23350.045*
C120.3980 (2)0.43547 (17)0.23656 (17)0.0290 (4)
C130.2576 (2)0.47501 (17)0.32996 (17)0.0308 (4)
H13A0.27620.45100.41210.037*
H13B0.18280.43070.32600.037*
C310.20415 (19)0.64064 (16)0.61646 (15)0.0233 (4)
C320.0813 (2)0.70767 (17)0.69093 (16)0.0277 (4)
H320.05970.79530.67600.033*
C330.0094 (2)0.64553 (18)0.78708 (17)0.0314 (4)
H330.09300.69130.83730.038*
C340.0207 (2)0.51815 (18)0.81044 (17)0.0325 (4)
H340.04190.47630.87590.039*
C350.1432 (2)0.45254 (17)0.73722 (17)0.0314 (4)
H350.16420.36500.75280.038*
C360.2362 (2)0.51200 (16)0.64142 (16)0.0273 (4)
H360.32120.46550.59310.033*
C410.26170 (19)0.93180 (16)0.51707 (16)0.0261 (4)
C420.3421 (2)0.91200 (18)0.60337 (18)0.0340 (4)
H420.38520.83020.63160.041*
C430.3601 (3)1.0112 (2)0.6488 (2)0.0428 (5)
H430.41470.99660.70860.051*
C440.2998 (2)1.1302 (2)0.6082 (2)0.0432 (5)
H440.31401.19760.63880.052*
C450.2185 (2)1.15132 (18)0.5227 (2)0.0399 (5)
H450.17601.23340.49480.048*
C460.1989 (2)1.05301 (17)0.47753 (18)0.0330 (4)
H460.14221.06810.41920.040*
C510.25611 (19)0.91426 (16)0.23651 (16)0.0241 (4)
C520.3438 (2)0.98542 (17)0.14762 (17)0.0299 (4)
H520.44500.97430.14570.036*
C530.2864 (2)1.07225 (18)0.06184 (18)0.0350 (5)
H530.34891.11970.00250.042*
C540.1398 (2)1.09101 (17)0.06109 (17)0.0333 (4)
C5410.0791 (3)1.1854 (2)0.0336 (2)0.0490 (6)
H54A0.10711.26400.03670.074*
H54B0.02851.19690.01210.074*
H54C0.11941.15640.11340.074*
C550.0510 (2)1.02117 (18)0.15091 (18)0.0328 (4)
H550.05041.03320.15300.039*
C560.1077 (2)0.93444 (17)0.23737 (17)0.0291 (4)
H560.04460.88830.29780.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0260 (2)0.0264 (2)0.0318 (3)0.00766 (18)0.00599 (19)0.00373 (19)
C10.0244 (9)0.0228 (9)0.0229 (9)0.0055 (7)0.0064 (7)0.0003 (7)
O20.0277 (7)0.0238 (6)0.0220 (6)0.0001 (5)0.0046 (5)0.0021 (5)
N30.0274 (8)0.0215 (7)0.0215 (7)0.0029 (6)0.0040 (6)0.0032 (6)
C40.0235 (9)0.0212 (9)0.0237 (9)0.0041 (7)0.0062 (7)0.0015 (7)
C50.0236 (9)0.0231 (9)0.0239 (9)0.0067 (7)0.0053 (7)0.0014 (7)
O60.0332 (8)0.0318 (7)0.0381 (8)0.0085 (6)0.0040 (6)0.0016 (6)
C60.0257 (9)0.0288 (10)0.0228 (9)0.0051 (8)0.0079 (7)0.0021 (7)
C70.0306 (10)0.0303 (10)0.0227 (9)0.0011 (8)0.0101 (8)0.0030 (8)
C80.0336 (11)0.0391 (11)0.0290 (10)0.0001 (9)0.0093 (8)0.0060 (9)
C90.0410 (12)0.0443 (12)0.0354 (11)0.0083 (10)0.0118 (9)0.0164 (10)
C100.0547 (14)0.0322 (11)0.0444 (13)0.0054 (10)0.0213 (11)0.0143 (10)
C110.0487 (13)0.0297 (10)0.0371 (11)0.0057 (9)0.0159 (10)0.0057 (9)
C120.0358 (11)0.0268 (9)0.0249 (9)0.0028 (8)0.0123 (8)0.0016 (8)
C130.0374 (11)0.0262 (10)0.0300 (10)0.0109 (8)0.0072 (8)0.0027 (8)
C310.0269 (9)0.0243 (9)0.0201 (8)0.0062 (7)0.0084 (7)0.0007 (7)
C320.0315 (10)0.0238 (9)0.0264 (9)0.0033 (8)0.0067 (8)0.0033 (7)
C330.0299 (10)0.0331 (10)0.0286 (10)0.0049 (8)0.0029 (8)0.0062 (8)
C340.0351 (11)0.0331 (10)0.0274 (10)0.0129 (9)0.0033 (8)0.0018 (8)
C350.0399 (11)0.0220 (9)0.0298 (10)0.0065 (8)0.0085 (9)0.0026 (8)
C360.0312 (10)0.0250 (9)0.0230 (9)0.0017 (8)0.0069 (8)0.0015 (7)
C410.0261 (9)0.0253 (9)0.0240 (9)0.0077 (7)0.0002 (7)0.0028 (7)
C420.0401 (11)0.0290 (10)0.0345 (11)0.0087 (9)0.0095 (9)0.0052 (8)
C430.0474 (13)0.0460 (13)0.0432 (12)0.0168 (10)0.0122 (10)0.0140 (10)
C440.0456 (13)0.0356 (12)0.0492 (13)0.0182 (10)0.0046 (10)0.0196 (10)
C450.0403 (12)0.0236 (10)0.0466 (13)0.0065 (9)0.0048 (10)0.0063 (9)
C460.0333 (11)0.0269 (10)0.0339 (10)0.0041 (8)0.0034 (8)0.0025 (8)
C510.0265 (9)0.0212 (9)0.0227 (9)0.0045 (7)0.0044 (7)0.0017 (7)
C520.0289 (10)0.0261 (9)0.0309 (10)0.0065 (8)0.0027 (8)0.0004 (8)
C530.0430 (12)0.0262 (10)0.0276 (10)0.0087 (9)0.0008 (9)0.0037 (8)
C540.0448 (12)0.0249 (10)0.0266 (10)0.0020 (8)0.0090 (9)0.0009 (8)
C5410.0675 (16)0.0357 (12)0.0378 (12)0.0016 (11)0.0186 (11)0.0064 (10)
C550.0325 (10)0.0304 (10)0.0345 (11)0.0023 (8)0.0112 (9)0.0028 (8)
C560.0310 (10)0.0267 (9)0.0272 (10)0.0081 (8)0.0048 (8)0.0017 (8)
Geometric parameters (Å, º) top
S1—C131.8121 (19)C33—C341.382 (3)
S1—C11.8280 (18)C33—H330.9500
C1—O21.431 (2)C34—C351.382 (3)
C1—C51.529 (2)C34—H340.9500
C1—C61.542 (2)C35—C361.387 (3)
O2—N31.4609 (18)C35—H350.9500
N3—C311.414 (2)C36—H360.9500
N3—C41.476 (2)C41—C421.385 (3)
C4—C411.519 (2)C41—C461.398 (3)
C4—C51.547 (2)C42—C431.389 (3)
C4—H41.0000C42—H420.9500
C5—C511.517 (2)C43—C441.375 (3)
C5—H51.0000C43—H430.9500
O6—C61.217 (2)C44—C451.383 (3)
C6—C71.485 (3)C44—H440.9500
C7—C81.400 (3)C45—C461.386 (3)
C7—C121.406 (3)C45—H450.9500
C8—C91.384 (3)C46—H460.9500
C8—H80.9500C51—C521.391 (2)
C9—C101.385 (3)C51—C561.395 (3)
C9—H90.9500C52—C531.386 (3)
C10—C111.388 (3)C52—H520.9500
C10—H100.9500C53—C541.384 (3)
C11—C121.395 (3)C53—H530.9500
C11—H110.9500C54—C551.394 (3)
C12—C131.504 (3)C54—C5411.511 (3)
C13—H13A0.9900C541—H54A0.9800
C13—H13B0.9900C541—H54B0.9800
C31—C361.397 (2)C541—H54C0.9800
C31—C321.398 (3)C55—C561.388 (3)
C32—C331.392 (3)C55—H550.9500
C32—H320.9500C56—H560.9500
C13—S1—C195.14 (9)C31—C32—H32120.1
O2—C1—C5102.58 (13)C34—C33—C32120.89 (18)
O2—C1—C6105.77 (13)C34—C33—H33119.6
C5—C1—C6114.28 (14)C32—C33—H33119.6
O2—C1—S1112.35 (11)C35—C34—C33119.04 (17)
C5—C1—S1112.42 (12)C35—C34—H34120.5
C6—C1—S1109.14 (12)C33—C34—H34120.5
C1—O2—N3106.71 (12)C34—C35—C36121.34 (17)
C31—N3—O2111.65 (13)C34—C35—H35119.3
C31—N3—C4118.55 (14)C36—C35—H35119.3
O2—N3—C4108.29 (12)C35—C36—C31119.55 (17)
N3—C4—C41111.96 (14)C35—C36—H36120.2
N3—C4—C5103.40 (13)C31—C36—H36120.2
C41—C4—C5113.42 (14)C42—C41—C46118.71 (18)
N3—C4—H4109.3C42—C41—C4121.85 (16)
C41—C4—H4109.3C46—C41—C4119.44 (17)
C5—C4—H4109.3C41—C42—C43120.30 (19)
C51—C5—C1118.84 (14)C41—C42—H42119.8
C51—C5—C4116.23 (14)C43—C42—H42119.8
C1—C5—C4100.87 (13)C44—C43—C42120.7 (2)
C51—C5—H5106.7C44—C43—H43119.7
C1—C5—H5106.7C42—C43—H43119.7
C4—C5—H5106.7C43—C44—C45119.63 (19)
O6—C6—C7121.99 (17)C43—C44—H44120.2
O6—C6—C1118.35 (16)C45—C44—H44120.2
C7—C6—C1119.65 (15)C44—C45—C46120.1 (2)
C8—C7—C12119.47 (18)C44—C45—H45119.9
C8—C7—C6117.28 (17)C46—C45—H45119.9
C12—C7—C6123.24 (16)C45—C46—C41120.5 (2)
C9—C8—C7120.9 (2)C45—C46—H46119.7
C9—C8—H8119.6C41—C46—H46119.7
C7—C8—H8119.6C52—C51—C56117.65 (16)
C8—C9—C10119.5 (2)C52—C51—C5118.86 (16)
C8—C9—H9120.2C56—C51—C5123.48 (15)
C10—C9—H9120.2C53—C52—C51121.34 (18)
C9—C10—C11120.4 (2)C53—C52—H52119.3
C9—C10—H10119.8C51—C52—H52119.3
C11—C10—H10119.8C54—C53—C52121.17 (18)
C10—C11—C12120.8 (2)C54—C53—H53119.4
C10—C11—H11119.6C52—C53—H53119.4
C12—C11—H11119.6C53—C54—C55117.75 (17)
C11—C12—C7118.89 (18)C53—C54—C541120.57 (19)
C11—C12—C13118.91 (18)C55—C54—C541121.7 (2)
C7—C12—C13122.19 (16)C54—C541—H54A109.5
C12—C13—S1113.07 (13)C54—C541—H54B109.5
C12—C13—H13A109.0H54A—C541—H54B109.5
S1—C13—H13A109.0C54—C541—H54C109.5
C12—C13—H13B109.0H54A—C541—H54C109.5
S1—C13—H13B109.0H54B—C541—H54C109.5
H13A—C13—H13B107.8C56—C55—C54121.32 (19)
C36—C31—C32119.39 (16)C56—C55—H55119.3
C36—C31—N3120.93 (16)C54—C55—H55119.3
C32—C31—N3119.37 (15)C55—C56—C51120.76 (17)
C33—C32—C31119.75 (17)C55—C56—H56119.6
C33—C32—H32120.1C51—C56—H56119.6
C13—S1—C1—O255.10 (13)C6—C7—C12—C130.3 (3)
C13—S1—C1—C5170.22 (13)C11—C12—C13—S1146.76 (15)
C13—S1—C1—C661.89 (13)C7—C12—C13—S132.3 (2)
C5—C1—O2—N337.30 (15)C1—S1—C13—C1258.25 (15)
C6—C1—O2—N3157.36 (13)O2—N3—C31—C3626.3 (2)
S1—C1—O2—N383.66 (13)C4—N3—C31—C36153.17 (16)
C1—O2—N3—C31115.14 (14)O2—N3—C31—C32160.09 (15)
C1—O2—N3—C417.14 (16)C4—N3—C31—C3233.2 (2)
C31—N3—C4—C4198.89 (17)C36—C31—C32—C331.5 (3)
O2—N3—C4—C41132.64 (14)N3—C31—C32—C33175.22 (17)
C31—N3—C4—C5138.65 (15)C31—C32—C33—C340.3 (3)
O2—N3—C4—C510.18 (16)C32—C33—C34—C350.4 (3)
O2—C1—C5—C51170.53 (14)C33—C34—C35—C360.2 (3)
C6—C1—C5—C5175.50 (19)C34—C35—C36—C311.4 (3)
S1—C1—C5—C5149.63 (19)C32—C31—C36—C352.0 (3)
O2—C1—C5—C442.25 (16)N3—C31—C36—C35175.67 (17)
C6—C1—C5—C4156.22 (14)N3—C4—C41—C426.2 (2)
S1—C1—C5—C478.66 (14)C5—C4—C41—C42110.35 (19)
N3—C4—C5—C51161.43 (14)N3—C4—C41—C46174.25 (15)
C41—C4—C5—C5177.09 (19)C5—C4—C41—C4669.2 (2)
N3—C4—C5—C131.48 (16)C46—C41—C42—C430.3 (3)
C41—C4—C5—C1152.95 (15)C4—C41—C42—C43179.21 (18)
O2—C1—C6—O6101.43 (18)C41—C42—C43—C440.6 (3)
C5—C1—C6—O610.6 (2)C42—C43—C44—C451.0 (3)
S1—C1—C6—O6137.49 (15)C43—C44—C45—C460.5 (3)
O2—C1—C6—C778.72 (18)C44—C45—C46—C410.5 (3)
C5—C1—C6—C7169.20 (15)C42—C41—C46—C450.9 (3)
S1—C1—C6—C742.36 (19)C4—C41—C46—C45178.69 (17)
O6—C6—C7—C85.6 (3)C1—C5—C51—C52108.74 (19)
C1—C6—C7—C8174.59 (16)C4—C5—C51—C52130.51 (17)
O6—C6—C7—C12173.40 (18)C1—C5—C51—C5672.8 (2)
C1—C6—C7—C126.4 (3)C4—C5—C51—C5648.0 (2)
C12—C7—C8—C90.7 (3)C56—C51—C52—C530.8 (3)
C6—C7—C8—C9178.31 (18)C5—C51—C52—C53179.36 (17)
C7—C8—C9—C100.6 (3)C51—C52—C53—C540.3 (3)
C8—C9—C10—C110.1 (3)C52—C53—C54—C551.1 (3)
C9—C10—C11—C120.4 (3)C52—C53—C54—C541179.55 (19)
C10—C11—C12—C70.4 (3)C53—C54—C55—C560.9 (3)
C10—C11—C12—C13178.74 (19)C541—C54—C55—C56179.84 (19)
C8—C7—C12—C110.2 (3)C54—C55—C56—C510.3 (3)
C6—C7—C12—C11178.76 (17)C52—C51—C56—C551.1 (3)
C8—C7—C12—C13179.27 (17)C5—C51—C56—C55179.56 (17)

Experimental details

Crystal data
Chemical formulaC30H25NO2S
Mr463.57
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.6687 (2), 11.2722 (3), 11.5579 (3)
α, β, γ (°)78.850 (2), 73.486 (2), 75.860 (2)
V3)1160.66 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.41 × 0.36 × 0.18
Data collection
DiffractometerSiemens CCD three-circle
diffractometer
Absorption correctionEmpirical
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.934, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
22101, 4250, 3575
Rint0.033
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.099, 1.05
No. of reflections4250
No. of parameters308
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.26

Computer programs: SMART (Siemens, 1995), SMART, SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Sheldrick, 1991).

Selected geometric parameters (Å, º) top
S1—C131.8121 (19)O2—N31.4609 (18)
S1—C11.8280 (18)N3—C41.476 (2)
C1—O21.431 (2)C4—C51.547 (2)
C1—C51.529 (2)
C13—S1—C195.14 (9)C31—N3—C4118.55 (14)
C1—O2—N3106.71 (12)O2—N3—C4108.29 (12)
C31—N3—O2111.65 (13)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds