Download citation
Download citation
link to html
The title compound, benzene-1,3,5-triyl­tris­methyl­enetris­(di­phenyl­phosphine oxide) aceto­nitrile solvate monohydrate, C45H39O3P3·C2H3N·H2O, forms two polymorphs: (I), which crystallizes in the triclinic space group P1, and (II), which crystallizes in the monoclinic space group Pn. The crystal and molecular structures of (I) were previously determined. The results of the crystal structure determination of (II) are presented here. The overall arrangement of two of the di­phenyl­phosphine oxide substituents is determined by strong hydrogen bonds Owater—H...Ooxide. All three P atoms adopt distorted tetrahedral geometry, with C—P—C angles equal to or smaller than tetrahedral and O—P—C angles greater than tetrahedral. All three di­phenyl­phosphine oxide substituents are stabilized by weak Cphenyl—H...Ooxide hydrogen bonds. For each substituent, one of the phenyl rings is almost coplanar with the P=O bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801010157/cv6030sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801010157/cv6030Isup2.hkl
Contains datablock I

CCDC reference: 170775

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.013 Å
  • H-atom completeness 94%
  • R factor = 0.079
  • wR factor = 0.164
  • Data-to-parameter ratio = 13.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_213 Alert C Atom C24 has ADP max/min Ratio ........... 3.10 PLAT_213 Alert C Atom C25 has ADP max/min Ratio ........... 3.10 PLAT_213 Alert C Atom C26 has ADP max/min Ratio ........... 3.30 PLAT_321 Alert C Check Hybridisation of C(98) in solvent/ion ? General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and the formula from the _atom_site* data. Atom count from _chemical_formula_sum:C47 H44 N1 O4 P3 Atom count from the _atom_site data: C47 H41 N1 O4 P3 CELLZ_01 From the CIF: _cell_formula_units_Z 2 From the CIF: _chemical_formula_sum C47 H44 N O4 P3 TEST: Compare cell contents of formula and atom_site data atom Z*formula cif sites diff C 94.00 94.00 0.00 H 88.00 82.00 6.00 N 2.00 2.00 0.00 O 8.00 8.00 0.00 P 6.00 6.00 0.00 Difference between formula and atom_site contents detected. WARNING: H atoms missing from atom site list. Is this intentional? REFLT_03 From the CIF: _diffrn_reflns_theta_max 25.24 From the CIF: _reflns_number_total 6643 Count of symmetry unique reflns 3712 Completeness (_total/calc) 178.96% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2931 Fraction of Friedel pairs measured 0.790 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
4 Alert Level C = Please check

Comment top

The crystal and molecular structures of the title compound crystallizing in the P1 space group were previously determined [(I) hereafter; Cambridge Structural Database (CSD; Allen & Kennard, 1993) refcode GOKQAY (Pietrusiewicz et al., 1998)]. Since the crystal structure of (I) had two pairs of only slightly different molecules in the independent part of the unit cell, and the net constants were close to monoclinic system, we tried to obtain a second polymorph of (I), but all attempts failed. The crystals were stored in the dark at 293 K. After four years, we found that the crystals had changed in appearance. The colourless crystals of (I) had become pale pink. Thus, we decided to redetermine the crystal structure of the (I). Measurement of the unit-cell parameters revealed the monoclinic crystal system (II).

The perspective view of (II) and the atomic numbering scheme are shown in Fig. 1. A l l interatomic distances can be considered as normal. We could not localize the H atoms of the acetonitrile molecule, probably because of the fully disordered methyl group. These H atoms are not involved in any hydrogen bond which will be able to provide additional stabilization [the shortest methyl group carbon to nearest atom distance is 3.645 (12) Å]. The phenyl group including the C22 atom shows signs of disorder, but invoking this model did not improve the quality of the refinement; therefore, the model was not applied. The overall molecular geometry of (II) is similar to that of (I) (Pietrusiewicz et al., 1998). The weighted r.m.s. deviation for all atoms in (II) and the first and second molecules of (I) are 0.146 (3) and 0.154 (4) Å, respectively. Superposition of the two molecules, i.e. (II) and one of the molecules of (I), is shown in Fig. 2. The overall arrangement of the diphenylphosphine oxide substituents (best described by torsion angles, see Table 1) indicated by the P1 and P3 atoms is imposed by strong Owater—H···Ooxide hydrogen bonds (for details, see Table 2). These also affect the dihedral angle between the central benzene ring and P—CH2Cbenzene which amounts to 59.7 (3) and 58.9 (3)° for the branches indicated by the P1 and P3 atoms, and 76.2 (4) for the branch indicated by the P2 atom.

The phenyl rings make angles of 67.0 (3), 78.8 (3) and 76.6 (2)° with the substituents indicated by the P1, P2 and P3 atoms, respectively. All the P atoms adopt distorted tetrahedral geometry, with C—P—C angles equal or smaller than tetrahedral and O—P—C angles greater than tetrahedral (Table 1). It is possible to suggest that the steric effect imposed by the phenyl groups has no greater importance. All three diphenylphosphine oxide substituents are stabilized by weak hydrogen bonds Cphenyl—H···Ooxide (Table 2). For each substituent, one of the phenyl rings is almost coplanar with the PO bond. The central benzene ring makes dihedral angles of 60.7 (3), 72.1 (2), 78.7 (3), 27.6 (3), 10.5 (2) and 82.8 (2)° with the phenyl rings indicated by the C10, C15, C22, C28, C34 and C40 atoms, respectively; the respective P atoms deviate by 0.14 (1), 0.04 (1), 0.21 (1), 0.07 (1), 0.06 (1) and 0.00 (1) Å from the indicated phenyl rings. There are no unusual intermolecular short contacts except for the hydrogen bonds described in Table 2.

Experimental top

The title compound was prepared according to the method of Pietrusiewicz et al. (1998) and stored in the dark at 293 K for four years.

Computing details top

Data collection: CrysAlis CCD (UNIL IC & Kuma, 2000); cell refinement: CrysAlis RED (UNIL IC & Kuma, 2000); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL/PC (Sheldrick, 1990b) and ORTEP-3 (Farrugia 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (II). Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Superposition of the molecules of (I) and (II). The molecule of (I) is indicated by dashed lines. H atoms have been omitted for clarity.
benzene-1,3,5-triyltrismethylenetris(diphenylphosphine oxide) acetonitrile solvate monohydrate top
Crystal data top
C45H39O3P3·C2H3N·H2OF(000) = 820
Mr = 779.74Dx = 1.266 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
a = 15.3382 (14) ÅCell parameters from 8473 reflections
b = 8.6418 (9) Åθ = 2–22°
c = 15.9748 (11) ŵ = 0.19 mm1
β = 105.034 (10)°T = 291 K
V = 2045.0 (3) Å3Pyramid, pale pink
Z = 20.60 × 0.40 × 0.40 mm
Data collection top
Kuma KM4-CCD
diffractometer
6643 independent reflections
Radiation source: fine-focus sealed tube6532 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scansθmax = 25.2°, θmin = 3.5°
Absorption correction: numerical
(X-RED; Stoe & Cie, 1999)
h = 1818
Tmin = 0.894, Tmax = 0.928k = 1010
20214 measured reflectionsl = 1918
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.079 w = 1/[σ2(Fo2) + (0.0113P)2 + 5.8292P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.164(Δ/σ)max = 0.003
S = 1.08Δρmax = 0.29 e Å3
6643 reflectionsΔρmin = 0.42 e Å3
497 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0083 (5)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.24 (15)
Crystal data top
C45H39O3P3·C2H3N·H2OV = 2045.0 (3) Å3
Mr = 779.74Z = 2
Monoclinic, PnMo Kα radiation
a = 15.3382 (14) ŵ = 0.19 mm1
b = 8.6418 (9) ÅT = 291 K
c = 15.9748 (11) Å0.60 × 0.40 × 0.40 mm
β = 105.034 (10)°
Data collection top
Kuma KM4-CCD
diffractometer
6643 independent reflections
Absorption correction: numerical
(X-RED; Stoe & Cie, 1999)
6532 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.928Rint = 0.060
20214 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.079H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.164Δρmax = 0.29 e Å3
S = 1.08Δρmin = 0.42 e Å3
6643 reflectionsAbsolute structure: Flack (1983)
497 parametersAbsolute structure parameter: 0.24 (15)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.89339 (10)0.96860 (17)0.31681 (10)0.0421 (3)
P20.74371 (11)0.77740 (19)0.71926 (11)0.0489 (4)
P30.62228 (12)0.43955 (18)0.34069 (13)0.0543 (4)
O10.8595 (3)0.8535 (5)0.2459 (3)0.0549 (11)
O20.6797 (4)0.6471 (7)0.6904 (4)0.0841 (18)
O30.6191 (3)0.5182 (5)0.2568 (3)0.0649 (13)
C10.8119 (4)0.8575 (7)0.4433 (4)0.0409 (12)
C20.8334 (4)0.8705 (7)0.5331 (4)0.0451 (14)
H20.85480.96420.55910.054*
C30.8236 (4)0.7484 (7)0.5838 (4)0.0460 (14)
C40.7914 (4)0.6084 (7)0.5443 (4)0.0486 (14)
H40.78570.52400.57860.058*
C50.7679 (4)0.5925 (7)0.4557 (4)0.0447 (13)
C60.7793 (4)0.7163 (6)0.4047 (4)0.0460 (14)
H60.76530.70570.34480.055*
C70.8193 (4)0.9931 (7)0.3874 (4)0.0462 (14)
H7A0.75941.01770.35190.055*
H7B0.84021.08140.42470.055*
C80.8437 (4)0.7613 (8)0.6824 (4)0.0539 (16)
H8A0.87730.67060.70850.065*
H8B0.88140.85130.70150.065*
C90.7334 (4)0.4362 (7)0.4158 (4)0.0514 (15)
H9A0.77600.39610.38570.062*
H9B0.73220.36470.46230.062*
C100.8994 (4)1.1607 (7)0.2757 (3)0.0399 (12)
C110.9778 (6)1.2482 (9)0.2949 (7)0.088 (3)
H111.03211.20630.32680.105*
C120.9733 (7)1.3976 (10)0.2658 (8)0.119 (4)
H121.02561.45710.28030.143*
C130.8980 (6)1.4623 (9)0.2179 (6)0.073 (2)
H130.89821.56400.19890.087*
C140.8217 (6)1.3783 (9)0.1977 (5)0.073 (2)
H140.76811.42260.16580.088*
C150.8232 (5)1.2258 (9)0.2243 (5)0.073 (2)
H150.77111.16640.20680.088*
C161.0023 (4)0.9187 (7)0.3845 (4)0.0441 (13)
C171.0510 (5)0.8008 (8)0.3574 (6)0.068 (2)
H171.02620.74860.30580.082*
C181.1356 (6)0.7621 (11)0.4071 (7)0.094 (3)
H181.16830.68420.38890.113*
C191.1724 (6)0.8396 (12)0.4849 (6)0.086 (3)
H191.22900.81140.51900.103*
C201.1273 (6)0.9531 (13)0.5103 (6)0.094 (3)
H201.15411.00680.56090.113*
C211.0414 (5)0.9937 (9)0.4634 (5)0.0639 (19)
H211.00961.07020.48390.077*
C220.6971 (5)0.9642 (9)0.6866 (4)0.0587 (18)
C230.6045 (6)0.9815 (15)0.6644 (6)0.106 (4)
H230.56830.89400.66050.128*
C240.5641 (11)1.124 (2)0.6480 (10)0.167 (9)
H240.50161.13460.63310.201*
C250.6174 (17)1.248 (2)0.6541 (9)0.182 (12)
H250.59031.34470.64490.218*
C260.7071 (13)1.2407 (13)0.6725 (7)0.134 (6)
H260.74151.32980.67400.161*
C270.7477 (7)1.0970 (8)0.6894 (5)0.075 (2)
H270.81031.08990.70290.090*
C280.7794 (4)0.7865 (7)0.8352 (4)0.0504 (15)
C290.7380 (6)0.6925 (10)0.8824 (5)0.073 (2)
H290.69340.62340.85460.087*
C300.7632 (6)0.7014 (12)0.9715 (6)0.087 (3)
H300.73530.63571.00280.104*
C310.8264 (6)0.8006 (12)1.0156 (5)0.089 (3)
H310.84020.80561.07570.107*
C320.8700 (7)0.8946 (15)0.9698 (6)0.113 (4)
H320.91480.96260.99850.136*
C330.8454 (6)0.8858 (13)0.8778 (5)0.094 (3)
H330.87460.94840.84620.113*
C340.5964 (4)0.2366 (7)0.3248 (5)0.0589 (18)
C350.5912 (5)0.1390 (8)0.3930 (6)0.072 (2)
H350.59900.18000.44830.086*
C360.5748 (7)0.0162 (10)0.3798 (7)0.086 (3)
H360.57170.08030.42570.103*
C370.5630 (5)0.0758 (9)0.2976 (7)0.083 (3)
H370.55290.18130.28870.100*
C380.5659 (5)0.0181 (9)0.2273 (6)0.075 (2)
H380.55610.02240.17170.089*
C390.5840 (5)0.1739 (8)0.2436 (5)0.0610 (19)
H390.58790.23810.19800.073*
C400.5428 (4)0.5204 (7)0.3927 (5)0.0570 (18)
C410.5594 (5)0.5348 (9)0.4825 (5)0.071 (2)
H410.61400.49950.51760.085*
C420.4960 (6)0.6009 (11)0.5211 (7)0.089 (3)
H420.50830.61270.58090.107*
C430.4160 (6)0.6473 (11)0.4679 (8)0.091 (3)
H430.37270.69040.49230.109*
C440.3968 (6)0.6327 (12)0.3801 (8)0.095 (3)
H440.34080.66320.34570.114*
C450.4618 (5)0.5716 (9)0.3418 (6)0.075 (2)
H450.45000.56580.28170.090*
C981.0181 (7)0.4915 (14)0.5388 (7)0.103 (3)
C990.9645 (6)0.3658 (13)0.5603 (6)0.084 (3)
N990.9239 (7)0.2692 (11)0.5813 (8)0.122 (4)
O990.6897 (4)0.7247 (7)0.1543 (3)0.0827 (16)
H99O0.67510.65970.18040.124*
H99P0.73570.77670.18330.124*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0525 (8)0.0398 (7)0.0331 (8)0.0046 (7)0.0093 (7)0.0009 (6)
P20.0561 (9)0.0514 (9)0.0383 (9)0.0073 (8)0.0108 (7)0.0018 (7)
P30.0556 (9)0.0382 (8)0.0675 (12)0.0049 (7)0.0133 (8)0.0012 (8)
O10.071 (3)0.050 (2)0.037 (2)0.009 (2)0.001 (2)0.0115 (19)
O20.095 (4)0.087 (4)0.081 (4)0.050 (3)0.043 (3)0.036 (3)
O30.081 (3)0.048 (3)0.061 (3)0.010 (2)0.010 (3)0.011 (2)
C10.046 (3)0.045 (3)0.034 (3)0.004 (2)0.015 (3)0.010 (2)
C20.056 (4)0.049 (3)0.031 (3)0.001 (3)0.014 (3)0.001 (3)
C30.051 (3)0.052 (3)0.035 (3)0.006 (3)0.012 (3)0.010 (3)
C40.052 (3)0.045 (3)0.047 (4)0.005 (3)0.010 (3)0.012 (3)
C50.041 (3)0.040 (3)0.049 (4)0.006 (2)0.005 (3)0.001 (3)
C60.052 (3)0.039 (3)0.048 (4)0.009 (3)0.015 (3)0.005 (3)
C70.048 (3)0.041 (3)0.051 (4)0.000 (2)0.014 (3)0.016 (3)
C80.054 (4)0.074 (4)0.031 (3)0.007 (3)0.006 (3)0.015 (3)
C90.052 (3)0.043 (3)0.058 (4)0.003 (3)0.012 (3)0.002 (3)
C100.048 (3)0.046 (3)0.025 (3)0.000 (3)0.009 (2)0.008 (2)
C110.064 (5)0.053 (4)0.139 (9)0.005 (4)0.015 (5)0.032 (5)
C120.087 (6)0.052 (5)0.191 (13)0.014 (5)0.012 (7)0.045 (6)
C130.089 (6)0.049 (4)0.082 (6)0.003 (4)0.027 (5)0.019 (4)
C140.088 (6)0.068 (5)0.057 (5)0.010 (4)0.005 (4)0.019 (4)
C150.068 (5)0.079 (5)0.058 (5)0.016 (4)0.009 (4)0.033 (4)
C160.051 (3)0.045 (3)0.038 (3)0.000 (3)0.017 (3)0.004 (3)
C170.073 (5)0.058 (4)0.078 (6)0.007 (4)0.024 (4)0.011 (4)
C180.068 (5)0.107 (7)0.105 (8)0.035 (5)0.017 (5)0.010 (6)
C190.066 (5)0.104 (7)0.075 (6)0.010 (5)0.006 (5)0.005 (5)
C200.076 (6)0.116 (8)0.077 (6)0.014 (5)0.006 (5)0.014 (6)
C210.062 (4)0.073 (5)0.046 (4)0.005 (3)0.004 (3)0.021 (3)
C220.061 (4)0.082 (5)0.026 (3)0.015 (4)0.002 (3)0.006 (3)
C230.073 (6)0.164 (11)0.067 (6)0.046 (6)0.010 (5)0.037 (6)
C240.136 (12)0.26 (2)0.076 (8)0.136 (15)0.034 (8)0.045 (13)
C250.31 (3)0.174 (17)0.048 (7)0.16 (2)0.015 (13)0.012 (9)
C260.281 (19)0.081 (7)0.059 (6)0.058 (10)0.075 (10)0.039 (5)
C270.114 (7)0.049 (4)0.061 (5)0.000 (4)0.022 (5)0.010 (3)
C280.061 (4)0.050 (3)0.042 (3)0.002 (3)0.015 (3)0.010 (3)
C290.078 (5)0.080 (5)0.061 (5)0.013 (4)0.019 (4)0.016 (4)
C300.080 (6)0.117 (7)0.064 (6)0.003 (5)0.018 (5)0.037 (5)
C310.080 (6)0.141 (8)0.045 (4)0.007 (6)0.013 (4)0.034 (5)
C320.094 (7)0.165 (11)0.064 (6)0.039 (7)0.010 (5)0.010 (7)
C330.089 (6)0.145 (9)0.035 (4)0.047 (6)0.010 (4)0.028 (5)
C340.048 (4)0.036 (3)0.088 (5)0.007 (3)0.010 (4)0.009 (3)
C350.082 (5)0.048 (4)0.095 (6)0.013 (4)0.040 (5)0.001 (4)
C360.101 (7)0.061 (5)0.105 (7)0.008 (5)0.046 (6)0.007 (5)
C370.072 (5)0.042 (4)0.135 (9)0.007 (4)0.028 (6)0.003 (5)
C380.074 (5)0.051 (4)0.093 (6)0.001 (4)0.011 (5)0.018 (4)
C390.065 (4)0.042 (3)0.059 (4)0.006 (3)0.013 (4)0.002 (3)
C400.051 (4)0.031 (3)0.088 (6)0.003 (3)0.018 (4)0.001 (3)
C410.057 (4)0.082 (5)0.077 (5)0.013 (4)0.024 (4)0.001 (4)
C420.085 (6)0.092 (6)0.105 (7)0.003 (5)0.050 (6)0.022 (5)
C430.070 (6)0.091 (7)0.119 (9)0.022 (5)0.037 (6)0.007 (6)
C440.056 (5)0.102 (7)0.119 (9)0.017 (5)0.009 (5)0.013 (6)
C450.053 (4)0.066 (5)0.094 (6)0.001 (4)0.001 (4)0.009 (4)
C980.097 (7)0.123 (9)0.085 (7)0.010 (6)0.020 (6)0.017 (6)
C990.076 (6)0.095 (7)0.064 (5)0.029 (5)0.011 (4)0.028 (5)
N990.114 (8)0.072 (5)0.160 (10)0.008 (5)0.000 (7)0.004 (6)
O990.096 (4)0.090 (4)0.060 (3)0.019 (3)0.015 (3)0.020 (3)
Geometric parameters (Å, º) top
P1—O11.496 (4)C20—H200.9300
P1—C161.791 (6)C21—H210.9300
P1—C101.796 (6)C22—C271.380 (11)
P1—C71.809 (6)C22—C231.381 (11)
P2—O21.486 (5)C23—C241.376 (18)
P2—C81.785 (6)C23—H230.9300
P2—C221.787 (7)C24—C251.33 (3)
P2—C281.792 (7)C24—H240.9300
P3—O31.492 (5)C25—C261.33 (2)
P3—C401.786 (7)C25—H250.9300
P3—C341.801 (6)C26—C271.384 (13)
P3—C91.812 (6)C26—H260.9300
C1—C21.392 (8)C27—H270.9300
C1—C61.400 (8)C28—C331.366 (10)
C1—C71.496 (7)C28—C291.371 (9)
C2—C31.361 (8)C29—C301.377 (11)
C2—H20.9300C29—H290.9300
C3—C41.395 (9)C30—C311.347 (12)
C3—C81.529 (8)C30—H300.9300
C4—C51.374 (9)C31—C321.377 (12)
C4—H40.9300C31—H310.9300
C5—C61.382 (8)C32—C331.421 (11)
C5—C91.529 (8)C32—H320.9300
C6—H60.9300C33—H330.9300
C7—H7A0.9700C34—C391.373 (10)
C7—H7B0.9700C34—C351.397 (10)
C8—H8A0.9700C35—C361.370 (11)
C8—H8B0.9700C35—H350.9300
C9—H9A0.9700C36—C371.379 (13)
C9—H9B0.9700C36—H360.9300
C10—C151.363 (9)C37—C381.395 (12)
C10—C111.385 (9)C37—H370.9300
C11—C121.368 (10)C38—C391.386 (10)
C11—H110.9300C38—H380.9300
C12—C131.333 (12)C39—H390.9300
C12—H120.9300C40—C451.370 (10)
C13—C141.343 (11)C40—C411.396 (10)
C13—H130.9300C41—C421.400 (10)
C14—C151.384 (10)C41—H410.9300
C14—H140.9300C42—C431.360 (13)
C15—H150.9300C42—H420.9300
C16—C171.396 (9)C43—C441.362 (13)
C16—C211.405 (9)C43—H430.9300
C17—C181.376 (11)C44—C451.402 (12)
C17—H170.9300C44—H440.9300
C18—C191.395 (12)C45—H450.9300
C18—H180.9300C98—C991.457 (15)
C19—C201.323 (13)C99—N991.142 (13)
C19—H190.9300O99—H99O0.7674
C20—C211.382 (11)O99—H99P0.8627
O1—P1—C16112.5 (3)C20—C19—H19119.8
O1—P1—C10112.3 (3)C18—C19—H19119.8
C16—P1—C10108.4 (3)C19—C20—C21121.5 (9)
O1—P1—C7113.5 (3)C19—C20—H20119.2
C16—P1—C7106.9 (3)C21—C20—H20119.2
C10—P1—C7102.7 (3)C20—C21—C16119.6 (7)
O2—P2—C8113.2 (3)C20—C21—H21120.2
O2—P2—C22114.3 (4)C16—C21—H21120.2
C8—P2—C22106.7 (3)C27—C22—C23116.8 (8)
O2—P2—C28110.7 (3)C27—C22—P2124.3 (6)
C8—P2—C28106.6 (3)C23—C22—P2118.7 (8)
C22—P2—C28104.7 (3)C24—C23—C22121.9 (13)
O3—P3—C40111.8 (3)C24—C23—H23119.0
O3—P3—C34111.2 (3)C22—C23—H23119.0
C40—P3—C34107.1 (3)C25—C24—C23117.8 (16)
O3—P3—C9114.1 (3)C25—C24—H24121.1
C40—P3—C9109.7 (3)C23—C24—H24121.1
C34—P3—C9102.3 (3)C24—C25—C26124.1 (17)
C2—C1—C6119.1 (5)C24—C25—H25118.0
C2—C1—C7121.2 (6)C26—C25—H25118.0
C6—C1—C7119.6 (5)C25—C26—C27118.0 (16)
C3—C2—C1121.2 (6)C25—C26—H26121.0
C3—C2—H2119.4C27—C26—H26121.0
C1—C2—H2119.4C22—C27—C26121.3 (11)
C2—C3—C4119.0 (5)C22—C27—H27119.3
C2—C3—C8122.2 (6)C26—C27—H27119.3
C4—C3—C8118.8 (5)C33—C28—C29119.2 (7)
C5—C4—C3121.3 (5)C33—C28—P2122.0 (5)
C5—C4—H4119.3C29—C28—P2118.8 (6)
C3—C4—H4119.3C28—C29—C30119.3 (8)
C4—C5—C6119.4 (5)C28—C29—H29120.3
C4—C5—C9119.2 (6)C30—C29—H29120.3
C6—C5—C9121.4 (6)C31—C30—C29123.1 (8)
C5—C6—C1120.0 (6)C31—C30—H30118.4
C5—C6—H6120.0C29—C30—H30118.4
C1—C6—H6120.0C30—C31—C32118.7 (8)
C1—C7—P1116.0 (4)C30—C31—H31120.7
C1—C7—H7A108.3C32—C31—H31120.7
P1—C7—H7A108.3C31—C32—C33118.9 (9)
C1—C7—H7B108.3C31—C32—H32120.6
P1—C7—H7B108.3C33—C32—H32120.6
H7A—C7—H7B107.4C28—C33—C32120.8 (8)
C3—C8—P2112.6 (4)C28—C33—H33119.6
C3—C8—H8A109.1C32—C33—H33119.6
P2—C8—H8A109.1C39—C34—C35118.5 (6)
C3—C8—H8B109.1C39—C34—P3119.3 (6)
P2—C8—H8B109.1C35—C34—P3122.2 (6)
H8A—C8—H8B107.8C36—C35—C34121.1 (8)
C5—C9—P3115.3 (4)C36—C35—H35119.5
C5—C9—H9A108.5C34—C35—H35119.5
P3—C9—H9A108.5C35—C36—C37119.1 (9)
C5—C9—H9B108.5C35—C36—H36120.5
P3—C9—H9B108.5C37—C36—H36120.5
H9A—C9—H9B107.5C36—C37—C38121.7 (8)
C15—C10—C11117.8 (6)C36—C37—H37119.1
C15—C10—P1119.0 (5)C38—C37—H37119.1
C11—C10—P1123.2 (5)C39—C38—C37117.4 (8)
C12—C11—C10118.5 (8)C39—C38—H38121.3
C12—C11—H11120.8C37—C38—H38121.3
C10—C11—H11120.8C34—C39—C38122.2 (8)
C13—C12—C11123.4 (9)C34—C39—H39118.9
C13—C12—H12118.3C38—C39—H39118.9
C11—C12—H12118.3C45—C40—C41118.5 (7)
C12—C13—C14118.9 (7)C45—C40—P3118.3 (7)
C12—C13—H13120.6C41—C40—P3123.2 (5)
C14—C13—H13120.6C40—C41—C42121.7 (8)
C13—C14—C15119.8 (8)C40—C41—H41119.1
C13—C14—H14120.1C42—C41—H41119.1
C15—C14—H14120.1C43—C42—C41117.5 (9)
C10—C15—C14121.5 (7)C43—C42—H42121.2
C10—C15—H15119.3C41—C42—H42121.2
C14—C15—H15119.3C42—C43—C44122.3 (9)
C17—C16—C21118.4 (6)C42—C43—H43118.8
C17—C16—P1118.6 (5)C44—C43—H43118.8
C21—C16—P1123.0 (5)C43—C44—C45119.8 (8)
C18—C17—C16119.9 (8)C43—C44—H44120.1
C18—C17—H17120.0C45—C44—H44120.1
C16—C17—H17120.0C40—C45—C44120.0 (9)
C17—C18—C19120.0 (8)C40—C45—H45120.0
C17—C18—H18120.0C44—C45—H45120.0
C19—C18—H18120.0N99—C99—C98176.6 (11)
C20—C19—C18120.4 (8)H99O—O99—H99P113.7
C2—C1—C7—P1121.9 (6)C8—P2—C28—C3349.5 (8)
C1—C7—P1—C10170.6 (5)C3—C8—P2—O256.7 (6)
C7—P1—C10—C11113.6 (7)O2—P2—C22—C2320.7 (7)
C7—P1—C10—C1565.2 (6)O2—P2—C22—C27165.5 (6)
C6—C1—C7—P160.7 (7)O2—P2—C28—C298.0 (7)
C1—C7—P1—C1656.7 (5)O2—P2—C28—C33173.0 (7)
C7—P1—C16—C17136.8 (5)C4—C5—C9—P3122.3 (6)
C7—P1—C16—C2143.8 (6)C5—C9—P3—C34169.3 (5)
C1—C7—P1—O168.0 (5)C9—P3—C34—C3560.7 (7)
O1—P1—C10—C11124.1 (7)C9—P3—C34—C39117.3 (6)
O1—P1—C10—C1557.1 (6)C6—C5—C9—P360.2 (7)
O1—P1—C16—C1711.6 (6)C5—C9—P3—C4055.8 (5)
O1—P1—C16—C21169.0 (5)C9—P3—C40—C4117.0 (7)
C2—C3—C8—P2102.3 (6)C9—P3—C40—C45162.5 (5)
C3—C8—P2—C2269.9 (5)C5—C9—P3—O370.5 (5)
C8—P2—C22—C23146.6 (6)O3—P3—C34—C35177.1 (6)
C8—P2—C22—C2739.6 (7)O3—P3—C34—C394.9 (7)
C4—C3—C8—P275.5 (7)O3—P3—C40—C41144.6 (6)
C3—C8—P2—C28178.6 (5)O3—P3—C40—C4534.9 (6)
C8—P2—C28—C29131.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O99—H99P···O10.862.022.861 (7)166
O99—H99O···O30.772.062.821 (7)169
C15—H15···O10.933.023.268 (9)97
C17—H17···O10.932.653.048 (9)107
C23—H23···O20.932.703.099 (13)107
C45—H45···O30.932.763.093 (10)103
C29—H29···O20.932.582.989 (10)107
C39—H39···O30.932.603.021 (8)108

Experimental details

Crystal data
Chemical formulaC45H39O3P3·C2H3N·H2O
Mr779.74
Crystal system, space groupMonoclinic, Pn
Temperature (K)291
a, b, c (Å)15.3382 (14), 8.6418 (9), 15.9748 (11)
β (°) 105.034 (10)
V3)2045.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.60 × 0.40 × 0.40
Data collection
DiffractometerKuma KM4-CCD
diffractometer
Absorption correctionNumerical
(X-RED; Stoe & Cie, 1999)
Tmin, Tmax0.894, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
20214, 6643, 6532
Rint0.060
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.164, 1.08
No. of reflections6643
No. of parameters497
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.42
Absolute structureFlack (1983)
Absolute structure parameter0.24 (15)

Computer programs: CrysAlis CCD (UNIL IC & Kuma, 2000), CrysAlis RED (UNIL IC & Kuma, 2000), CrysAlis RED, SHELXS97 (Sheldrick, 1990a), SHELXL97 (Sheldrick, 1997), XP in SHELXTL/PC (Sheldrick, 1990b) and ORTEP-3 (Farrugia 1997), SHELXL97.

Selected bond and torsion angles (º) top
O1—P1—C16112.5 (3)O2—P2—C28110.7 (3)
O1—P1—C10112.3 (3)C8—P2—C28106.6 (3)
C16—P1—C10108.4 (3)C22—P2—C28104.7 (3)
O1—P1—C7113.5 (3)O3—P3—C40111.8 (3)
C16—P1—C7106.9 (3)O3—P3—C34111.2 (3)
C10—P1—C7102.7 (3)C40—P3—C34107.1 (3)
O2—P2—C8113.2 (3)O3—P3—C9114.1 (3)
O2—P2—C22114.3 (4)C40—P3—C9109.7 (3)
C8—P2—C22106.7 (3)C34—P3—C9102.3 (3)
C1—C7—P1—C10170.6 (5)C8—P2—C28—C3349.5 (8)
C7—P1—C10—C1565.2 (6)C3—C8—P2—O256.7 (6)
C6—C1—C7—P160.7 (7)O2—P2—C22—C27165.5 (6)
C1—C7—P1—C1656.7 (5)O2—P2—C28—C33173.0 (7)
C7—P1—C16—C2143.8 (6)C5—C9—P3—C34169.3 (5)
C1—C7—P1—O168.0 (5)C9—P3—C34—C3560.7 (7)
O1—P1—C10—C1557.1 (6)C6—C5—C9—P360.2 (7)
O1—P1—C16—C21169.0 (5)C5—C9—P3—C4055.8 (5)
C3—C8—P2—C2269.9 (5)C9—P3—C40—C4117.0 (7)
C8—P2—C22—C2739.6 (7)C5—C9—P3—O370.5 (5)
C4—C3—C8—P275.5 (7)O3—P3—C34—C35177.1 (6)
C3—C8—P2—C28178.6 (5)O3—P3—C40—C41144.6 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O99—H99P···O10.862.022.861 (7)166.3
O99—H99O···O30.772.062.821 (7)168.5
C15—H15···O10.933.023.268 (9)97.3
C17—H17···O10.932.653.048 (9)106.7
C23—H23···O20.932.703.099 (13)106.9
C45—H45···O30.932.763.093 (10)102.6
C29—H29···O20.932.582.989 (10)106.9
C39—H39···O30.932.603.021 (8)108.4
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds