Download citation
Download citation
link to html
The crystal structure of the title compound, (-)-(4R,5R,4''R,5''R)-4,5,4'',5''-tetra­methyl­di­spiro­[1,3-dioxalane-2,1'(2'H)-acenaphthyl­ene-2',2''-1,3-dioxalane], C20H22O4, contains mol­ecules separated by normal van der Waals distances. The dioxa­cyclo­pentane rings adopt envelope conformations and the naphthalene moiety is essentially planar while the two C atoms bonded to it lie 0.122 (8) and 0.105 (8) Å on opposite sides from its mean plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801005049/cv6011sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801005049/cv6011Isup2.hkl
Contains datablock I

CCDC reference: 162833

Key indicators

  • Single-crystal X-ray study
  • T = 200 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.040
  • wR factor = 0.167
  • Data-to-parameter ratio = 8.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
ABSMU_01 Alert C The ratio of given/expected absorption coefficient lies outside the range 0.99 <> 1.01 Calculated value of mu = 0.087 Value of mu given = 0.090 STRVAL_01 From the CIF: _refine_ls_abs_structure_Flack -1.000 From the CIF: _refine_ls_abs_structure_Flack_su 4.000 Alert C Flack parameter is too small General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 25.00 From the CIF: _reflns_number_total 1758 Count of symmetry unique reflns 1748 Completeness (_total/calc) 100.57% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 10 Fraction of Friedel pairs measured 0.006 Are heavy atom types Z>Si present no Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

Naphthalene–Cr(CO)3 can be used to transfer Cr(CO)3 to monoarenes (Kündig & Timms, 1977). In cases where the monoarene is prochiral, the use of a homochiral naphthalene–Cr(CO)3 complex might be expected (depending on the actual mechanism of this transfer; Traylor et al., 1989; Howell et al., 1991) to result in some enantioselectivity in the formed monoarene complex. To simplify the number of possible Cr(CO)3 isomers of a chiral naphthalene and to maximize the chiral environment for subsequent Cr(CO)3 transfer, it was desirable to use C2 axially symmetric chiral naphthalenes in this work. One potential candidate was the bis-acetal (III) (Simion, 1996). Acenaphthoquinone (I) was reacted with diol (II) to produce the bis-ketal (III). The X-ray crystal structure determination of (III) was undertaken for two reasons: (i) to verify that the bis-acetal (III) was actually formed; the bis-1,4-dioxane structure (IV) was also possible and NMR spectroscopy was not definitive in distinguishing (III) and (IV), and (ii) to determine the detailed conformation of (III) with regard to the steric differentiation between the two naphthalene faces.

The structure of (III) is composed of molecules (Fig. 1) separated by normal van der Waals distances. The dioxacyclopentane rings adopt C13- and C17-envelope conformations, with C13 and C17 0.543 (9) and 0.550 (10) Å, respectively, out of the planes formed by the remaining ring atoms. The naphthalene moiety in the acenaphthene ring is essentially planar, while the two C atoms bonded to it lie 0.122 (8) and 0.105 (8) Å on opposite sides from its mean plane. The molecular dimensions are as expected.

Experimental top

Acenaphthoquinone, (I), was refluxed (Dean-Stark trap) with 9 equivalents of (-)-(2R,3R)-butane-2,3-diol, (II), in toluene solvent (cat. p-toluenesulfonic acid) for 17 d, leading to (III), a bis-ketal product, which was purified by flash chromatography (SiO2, 1:1 benzene–ethyl acetate), 80% yield, m.p. 478–479 K (from benzene–hexane), [α]D23 = -23.8 (c = 0.075, CHCl3). GC–MS analysis of the crude material also showed the presence of a minor isomer.

Refinement top

The space group was uniquely determined from the systematic absences. All the H atoms were located from difference maps and were included at geometrically idealized positions, with C—H = 0.95–1.00 Å, in a riding mode with isotropic displacement parameters 1.2 (non-methyl) and 1.5 (methyl) times the displacement parameters of the atoms to which they were attached. An absolute structure was not established in this analysis since the absolute configuration of the starting material was already known.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1994); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXS97 (Sheldrick, 1997); molecular graphics: TEXSAN; software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (III). Displacement ellipsoids have been plotted at the 50% probability level.
(-)-(4R,5R,4''R,5''R)-4,5,4'',5''-Tetramethyldispiro[1,3-dioxalane- 2,1'(2'H)-acenaphthylene-2',2''-1,3-dioxalane] top
Crystal data top
C20H22O4Dx = 1.264 Mg m3
Mr = 326.38Mo Kα radiation, λ = 0.71069 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 9.799 (3) Åθ = 10.0–15.0°
b = 19.331 (5) ŵ = 0.09 mm1
c = 9.054 (3) ÅT = 200 K
V = 1715.0 (9) Å3Prismatic, colourless
Z = 40.50 × 0.21 × 0.13 mm
F(000) = 696
Data collection top
Rigaku AFC-6S
diffractometer
Rint = 0.00
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.0°
Graphite monochromatorh = 011
ω/2θ scansk = 023
1758 measured reflectionsl = 010
1758 independent reflections3 standard reflections every 200 reflections
831 reflections with I > 2σ(I) intensity decay: <0.5%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullRiding
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0835P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.167(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.22 e Å3
1758 reflectionsΔρmin = 0.24 e Å3
218 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.013 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: (Flack, 1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 1 (4)
Crystal data top
C20H22O4V = 1715.0 (9) Å3
Mr = 326.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.799 (3) ŵ = 0.09 mm1
b = 19.331 (5) ÅT = 200 K
c = 9.054 (3) Å0.50 × 0.21 × 0.13 mm
Data collection top
Rigaku AFC-6S
diffractometer
Rint = 0.00
1758 measured reflections3 standard reflections every 200 reflections
1758 independent reflections intensity decay: <0.5%
831 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.040Riding
wR(F2) = 0.167Δρmax = 0.22 e Å3
S = 1.00Δρmin = 0.24 e Å3
1758 reflectionsAbsolute structure: (Flack, 1983)
218 parametersAbsolute structure parameter: 1 (4)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4224 (4)0.8113 (2)0.1498 (5)0.0382 (11)
O20.2437 (4)0.7621 (2)0.0262 (4)0.0382 (12)
O30.2818 (5)0.8308 (2)0.3954 (4)0.0396 (12)
O40.0994 (4)0.8184 (2)0.2423 (4)0.0368 (11)
C10.2786 (6)0.6664 (3)0.3185 (6)0.0330 (15)
C20.1912 (7)0.7163 (3)0.3759 (6)0.0343 (16)
C30.1042 (7)0.6992 (3)0.4889 (7)0.0417 (17)
H30.04320.73220.52690.050*
C40.1073 (8)0.6331 (4)0.5462 (7)0.052 (2)
H40.04820.62190.62440.062*
C50.1956 (7)0.5822 (4)0.4917 (7)0.0476 (19)
H50.19580.53770.53340.057*
C60.2844 (7)0.5981 (3)0.3737 (7)0.0394 (17)
C70.3782 (7)0.5544 (3)0.3019 (8)0.0457 (18)
H70.38690.50820.33320.055*
C80.4574 (7)0.5777 (3)0.1869 (8)0.048 (2)
H80.52020.54730.14300.058*
C90.4475 (7)0.6451 (4)0.1335 (7)0.0425 (18)
H90.50160.65940.05340.051*
C100.3567 (5)0.6912 (3)0.1997 (7)0.0308 (15)
C110.3138 (6)0.7633 (3)0.1641 (6)0.0354 (16)
C120.2172 (6)0.7847 (3)0.2969 (6)0.0302 (14)
C130.4487 (6)0.8185 (3)0.0069 (7)0.0368 (16)
H130.50490.77900.04050.044*
C140.3072 (6)0.8118 (4)0.0709 (6)0.0384 (16)
H140.25940.85670.06140.046*
C150.5246 (7)0.8837 (3)0.0339 (8)0.059 (2)
H15A0.61360.88090.01250.088*
H15B0.47400.92220.00750.088*
H15C0.53560.89040.13940.088*
C160.2968 (8)0.7876 (4)0.2260 (6)0.066 (2)
H16A0.20160.78580.25500.099*
H16B0.33670.74180.23430.099*
H16C0.34540.81930.29010.099*
C170.2239 (7)0.8971 (3)0.3690 (7)0.0408 (17)
H170.27000.91880.28340.049*
C180.0793 (7)0.8804 (3)0.3288 (8)0.0438 (18)
H180.02710.86910.41920.053*
C190.2438 (7)0.9423 (4)0.5052 (7)0.057 (2)
H19A0.34050.95020.52080.085*
H19B0.20560.91910.59080.085*
H19C0.19800.98620.49080.085*
C200.0015 (8)0.9315 (3)0.2383 (9)0.059 (2)
H20A0.08990.91410.22040.088*
H20B0.04760.93850.14470.088*
H20C0.00390.97510.29100.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.033 (2)0.046 (3)0.036 (2)0.006 (2)0.005 (2)0.001 (2)
O20.038 (3)0.052 (3)0.025 (2)0.006 (2)0.005 (2)0.000 (2)
O30.040 (3)0.039 (3)0.039 (2)0.003 (2)0.008 (2)0.009 (2)
O40.035 (2)0.035 (2)0.041 (2)0.005 (2)0.004 (2)0.007 (2)
C10.026 (3)0.051 (4)0.022 (3)0.007 (3)0.003 (3)0.001 (3)
C20.032 (3)0.043 (4)0.028 (3)0.004 (3)0.006 (3)0.001 (3)
C30.041 (4)0.046 (4)0.038 (4)0.002 (4)0.003 (4)0.003 (4)
C40.052 (5)0.070 (5)0.034 (4)0.017 (5)0.006 (4)0.011 (4)
C50.048 (4)0.046 (4)0.049 (4)0.013 (4)0.006 (4)0.019 (4)
C60.040 (4)0.039 (4)0.040 (4)0.008 (3)0.005 (4)0.003 (3)
C70.053 (4)0.033 (4)0.051 (4)0.008 (4)0.001 (4)0.002 (4)
C80.048 (4)0.037 (4)0.060 (5)0.006 (3)0.012 (4)0.011 (4)
C90.042 (4)0.050 (5)0.035 (4)0.001 (4)0.002 (4)0.005 (4)
C100.022 (3)0.035 (4)0.035 (3)0.003 (3)0.003 (3)0.007 (3)
C110.032 (3)0.051 (4)0.024 (3)0.007 (3)0.002 (3)0.004 (3)
C120.023 (3)0.037 (4)0.031 (3)0.003 (3)0.002 (3)0.007 (3)
C130.040 (4)0.029 (3)0.042 (4)0.007 (3)0.008 (3)0.006 (3)
C140.031 (3)0.042 (4)0.042 (4)0.010 (3)0.006 (3)0.007 (3)
C150.057 (5)0.047 (5)0.072 (5)0.000 (4)0.018 (5)0.012 (4)
C160.061 (5)0.107 (7)0.030 (4)0.016 (5)0.001 (4)0.006 (4)
C170.053 (4)0.033 (4)0.036 (4)0.007 (3)0.010 (4)0.004 (3)
C180.040 (4)0.050 (4)0.041 (4)0.001 (4)0.008 (4)0.010 (3)
C190.058 (5)0.053 (4)0.059 (5)0.007 (4)0.007 (4)0.026 (4)
C200.070 (5)0.037 (4)0.070 (5)0.014 (4)0.021 (4)0.008 (4)
Geometric parameters (Å, º) top
O1—C111.418 (7)C9—H90.9400
O1—C131.449 (7)C10—C111.492 (9)
O2—C111.425 (7)C11—C121.585 (8)
O2—C141.443 (7)C13—C151.482 (8)
O3—C121.411 (7)C13—C141.508 (9)
O3—C171.423 (7)C13—H130.9900
O4—C121.415 (7)C14—C161.483 (8)
O4—C181.444 (7)C14—H140.9900
C1—C21.391 (8)C15—H15A0.9700
C1—C101.405 (8)C15—H15B0.9700
C1—C61.413 (8)C15—H15C0.9700
C2—C31.371 (8)C16—H16A0.9700
C2—C121.525 (8)C16—H16B0.9700
C3—C41.379 (9)C16—H16C0.9700
C3—H30.9400C17—C181.499 (9)
C4—C51.400 (10)C17—C191.524 (8)
C4—H40.9400C17—H170.9900
C5—C61.411 (9)C18—C201.493 (9)
C5—H50.9400C18—H180.9900
C6—C71.408 (9)C19—H19A0.9700
C7—C81.374 (9)C19—H19B0.9700
C7—H70.9400C19—H19C0.9700
C8—C91.392 (9)C20—H20A0.9700
C8—H80.9400C20—H20B0.9700
C9—C101.395 (8)C20—H20C0.9700
C11—O1—C13106.6 (5)O1—C13—C14101.8 (5)
C11—O2—C14108.4 (4)C15—C13—C14118.1 (6)
C12—O3—C17106.5 (5)O1—C13—H13109.1
C12—O4—C18107.8 (4)C15—C13—H13109.1
C2—C1—C10112.6 (6)C14—C13—H13109.1
C2—C1—C6122.7 (6)O2—C14—C16109.7 (6)
C10—C1—C6124.6 (6)O2—C14—C13102.7 (5)
C3—C2—C1119.6 (6)C16—C14—C13117.0 (6)
C3—C2—C12131.5 (6)O2—C14—H14109.0
C1—C2—C12108.9 (5)C16—C14—H14109.0
C2—C3—C4119.4 (6)C13—C14—H14109.0
C2—C3—H3120.3C13—C15—H15A109.5
C4—C3—H3120.3C13—C15—H15B109.5
C3—C4—C5122.1 (7)H15A—C15—H15B109.5
C3—C4—H4118.9C13—C15—H15C109.5
C5—C4—H4118.9H15A—C15—H15C109.5
C4—C5—C6119.7 (6)H15B—C15—H15C109.5
C4—C5—H5120.2C14—C16—H16A109.5
C6—C5—H5120.2C14—C16—H16B109.5
C7—C6—C5128.5 (6)H16A—C16—H16B109.5
C7—C6—C1115.1 (6)C14—C16—H16C109.5
C5—C6—C1116.5 (6)H16A—C16—H16C109.5
C8—C7—C6121.4 (6)H16B—C16—H16C109.5
C8—C7—H7119.3O3—C17—C18102.9 (5)
C6—C7—H7119.3O3—C17—C19109.2 (5)
C7—C8—C9122.1 (7)C18—C17—C19116.2 (6)
C7—C8—H8119.0O3—C17—H17109.4
C9—C8—H8119.0C18—C17—H17109.4
C8—C9—C10119.5 (6)C19—C17—H17109.4
C8—C9—H9120.2O4—C18—C20108.7 (5)
C10—C9—H9120.2O4—C18—C17100.4 (5)
C9—C10—C1117.3 (6)C20—C18—C17118.3 (6)
C9—C10—C11133.2 (6)O4—C18—H18109.6
C1—C10—C11109.3 (5)C20—C18—H18109.6
O1—C11—O2107.0 (4)C17—C18—H18109.6
O1—C11—C10114.8 (5)C17—C19—H19A109.5
O2—C11—C10108.0 (5)C17—C19—H19B109.5
O1—C11—C12110.3 (5)H19A—C19—H19B109.5
O2—C11—C12112.4 (5)C17—C19—H19C109.5
C10—C11—C12104.3 (5)H19A—C19—H19C109.5
O3—C12—O4107.2 (4)H19B—C19—H19C109.5
O3—C12—C2109.0 (5)C18—C20—H20A109.5
O4—C12—C2115.3 (5)C18—C20—H20B109.5
O3—C12—C11112.1 (5)H20A—C20—H20B109.5
O4—C12—C11110.0 (4)C18—C20—H20C109.5
C2—C12—C11103.3 (5)H20A—C20—H20C109.5
O1—C13—C15109.4 (5)H20B—C20—H20C109.5
C10—C1—C2—C3177.5 (5)C17—O3—C12—C2140.7 (5)
C6—C1—C2—C31.3 (9)C17—O3—C12—C11105.5 (6)
C10—C1—C2—C124.4 (7)C18—O4—C12—O310.4 (6)
C6—C1—C2—C12176.8 (5)C18—O4—C12—C2111.2 (5)
C1—C2—C3—C41.5 (9)C18—O4—C12—C11132.5 (5)
C12—C2—C3—C4176.1 (6)C3—C2—C12—O368.7 (8)
C2—C3—C4—C50.7 (10)C1—C2—C12—O3109.1 (5)
C3—C4—C5—C60.4 (10)C3—C2—C12—O451.8 (9)
C4—C5—C6—C7178.7 (7)C1—C2—C12—O4130.3 (5)
C4—C5—C6—C10.7 (9)C3—C2—C12—C11171.9 (6)
C2—C1—C6—C7179.7 (6)C1—C2—C12—C1110.3 (6)
C10—C1—C6—C71.0 (9)O1—C11—C12—O318.7 (7)
C2—C1—C6—C50.2 (9)O2—C11—C12—O3138.0 (5)
C10—C1—C6—C5178.5 (5)C10—C11—C12—O3105.1 (5)
C5—C6—C7—C8179.5 (7)O1—C11—C12—O4100.4 (5)
C1—C6—C7—C80.1 (9)O2—C11—C12—O419.0 (7)
C6—C7—C8—C91.3 (10)C10—C11—C12—O4135.8 (5)
C7—C8—C9—C101.3 (10)O1—C11—C12—C2135.9 (5)
C8—C9—C10—C10.3 (9)O2—C11—C12—C2104.7 (6)
C8—C9—C10—C11174.6 (6)C10—C11—C12—C212.1 (6)
C2—C1—C10—C9179.7 (5)C11—O1—C13—C15160.5 (5)
C6—C1—C10—C90.9 (8)C11—O1—C13—C1434.9 (6)
C2—C1—C10—C114.1 (7)C11—O2—C14—C16148.4 (6)
C6—C1—C10—C11174.7 (5)C11—O2—C14—C1323.3 (6)
C13—O1—C11—O221.3 (6)O1—C13—C14—O235.0 (6)
C13—O1—C11—C1098.6 (5)C15—C13—C14—O2154.7 (6)
C13—O1—C11—C12143.8 (5)O1—C13—C14—C16155.2 (6)
C14—O2—C11—O12.1 (6)C15—C13—C14—C1685.1 (8)
C14—O2—C11—C10126.3 (5)C12—O3—C17—C1833.7 (6)
C14—O2—C11—C12119.1 (5)C12—O3—C17—C19157.7 (5)
C9—C10—C11—O154.2 (9)C12—O4—C18—C20154.8 (5)
C1—C10—C11—O1131.1 (5)C12—O4—C18—C1729.9 (6)
C9—C10—C11—O265.1 (8)O3—C17—C18—O438.4 (6)
C1—C10—C11—O2109.5 (5)C19—C17—C18—O4157.6 (5)
C9—C10—C11—C12175.1 (6)O3—C17—C18—C20156.4 (6)
C1—C10—C11—C1210.3 (6)C19—C17—C18—C2084.3 (8)
C17—O3—C12—O415.2 (6)

Experimental details

Crystal data
Chemical formulaC20H22O4
Mr326.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)200
a, b, c (Å)9.799 (3), 19.331 (5), 9.054 (3)
V3)1715.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.21 × 0.13
Data collection
DiffractometerRigaku AFC-6S
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1758, 1758, 831
Rint0.00
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.167, 1.00
No. of reflections1758
No. of parameters218
H-atom treatmentRiding
Δρmax, Δρmin (e Å3)0.22, 0.24
Absolute structure(Flack, 1983)
Absolute structure parameter1 (4)

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1994), SAPI91 (Fan, 1991), SHELXS97 (Sheldrick, 1997), TEXSAN, SHELXL97 (Sheldrick, 1997).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds