Download citation
Download citation
link to html
The novel title compound, [Re(C26H20N2)(C2H3N)(CO)3](PF6), has been synthesized and found to crystallize in the monoclinic system with space group P21/n. The molecular ionic structure consists of an ReI complex cation and a PF6- anion, where the Re atom is octahedrally coordinated by chelating di­methyl­di­phenyl­phenanthroline, three carbonyl groups and aceto­nitrile.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801003440/cv6006sup1.cif
Contains datablocks Re, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801003440/cv6006Isup2.hkl
Contains datablock I

CCDC reference: 159834

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.042
  • wR factor = 0.100
  • Data-to-parameter ratio = 23.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry




Comment top

It is well known (Sun & Lees, 2000) that rhenium(I) readily forms tricarbonyl molecular complexes of the general formula (L)Re(CO)3X, where L is chelating bipyridyl ligand, and X is Cl or Br. Substitution of the halogen with neutral molecule such as CH3CN leads to formation of a complex cation and an additional anion is needed for charge compensation.

A new molecular ionic compound has been prepared by reacting BrRe(CO)3(DMDPP) and AgPF6 in refluxing CH3CN (DMDPP is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, C26H20N2). The crystal structure of this molecular ionic compound, acetonitriletricarbonyl(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)- rhenium(I) hexafluorophosphate, (I), has been determined. The Re atom is octahedrally coordinated and the base of the octahedron is formed by two N atoms (N2 and N3) of the chelating DMDPP ligand and C atoms (C1 and C2) of two carbonyl groups, whereas the third carbonyl ligand (C3) and acetonitrile (N1) form apexes (Fig. 1). This octahedron is slightly distorted (see N—Re—C angles in Table 1) due to the chelating DMDPP ligand. However, the C3 and N1 forming apexes are practically on one line with Re [N1—Re—C3 is 179.1 (2)°].

All aromatic rings in the DMDPP ligand lie in a plane with deviations of less than 0.01 Å. This deviation is tripled when three rings of phenanthroline are taken together, but even then this does not exeed 0.03 Å. The two phenyl groups, C10–C15 and C26–C31, are tilted from the phenanthroline plane by 64.7 (2) and 56.1 (2)°, respectively. The ligand has only a twofold axis as the local symmetry element because of this tilt.

The Re cations and PF6 anions are held together by weak C—H···F hydrogen bonds, as listed in Table 2.

Experimental top

The compound (DMDPP)Re(CO)3(CH3CN)(PF6) was prepared by modifying the literature method of Caspar & Meyer (1983). To a 250 ml flask containing (DMDPP)Re(CO)3Br (500 mg, 0.7 mmol) and AgPF6 (215 mg, 0.85 mmol) was added 100 ml anhydrous CH3CN. The resulting mixture was refluxed under argon for 8 h. The solvent was filtered under argon to remove AgBr precipitate and the filtrate was evaporated to dryness under reduced pressure. The crude product was recrystallized from CH3CN/ether to afford a bright-yellow solid in 92% yield. IR [ν(CO), CH3CN, cm-1]: 2038, 1937. 1H NMR (DMSO-d6): 8.23 (s, 2 H, H5,6-phen), 8.05 (s, 2 H, H3,8-phen), 7.70–7.63 (m, 10 H, ph), 3.33 (s, 6 H, CH3), 2.28 (s, 3 H, CH3CN). 13C NMR (DMSO-d6): 196.0, 191.4, 163.4, 151.2, 147.6, 135.2, 129.8, 129.6, 129.1, 128.9, 127.0, 124.6, 118.0, 30.4, 1.06. Single crystals were grown by layering an acetonitrile solution of the complex with ether.

Structure description top

It is well known (Sun & Lees, 2000) that rhenium(I) readily forms tricarbonyl molecular complexes of the general formula (L)Re(CO)3X, where L is chelating bipyridyl ligand, and X is Cl or Br. Substitution of the halogen with neutral molecule such as CH3CN leads to formation of a complex cation and an additional anion is needed for charge compensation.

A new molecular ionic compound has been prepared by reacting BrRe(CO)3(DMDPP) and AgPF6 in refluxing CH3CN (DMDPP is 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, C26H20N2). The crystal structure of this molecular ionic compound, acetonitriletricarbonyl(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)- rhenium(I) hexafluorophosphate, (I), has been determined. The Re atom is octahedrally coordinated and the base of the octahedron is formed by two N atoms (N2 and N3) of the chelating DMDPP ligand and C atoms (C1 and C2) of two carbonyl groups, whereas the third carbonyl ligand (C3) and acetonitrile (N1) form apexes (Fig. 1). This octahedron is slightly distorted (see N—Re—C angles in Table 1) due to the chelating DMDPP ligand. However, the C3 and N1 forming apexes are practically on one line with Re [N1—Re—C3 is 179.1 (2)°].

All aromatic rings in the DMDPP ligand lie in a plane with deviations of less than 0.01 Å. This deviation is tripled when three rings of phenanthroline are taken together, but even then this does not exeed 0.03 Å. The two phenyl groups, C10–C15 and C26–C31, are tilted from the phenanthroline plane by 64.7 (2) and 56.1 (2)°, respectively. The ligand has only a twofold axis as the local symmetry element because of this tilt.

The Re cations and PF6 anions are held together by weak C—H···F hydrogen bonds, as listed in Table 2.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids at the 50% probability level.
2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline tricarbonyl acetonitrile rhenium hexafluorophosphate top
Crystal data top
[Re(C26H20N2)(C2H3N)(CO)3](PF6)F(000) = 1592
Mr = 816.7Dx = 1.757 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.2648 (5) ÅCell parameters from 7718 reflections
b = 23.4667 (11) Åθ = 4.4–54.7°
c = 13.2040 (6) ŵ = 4.06 mm1
β = 103.847 (1)°T = 293 K
V = 3088.2 (3) Å3Prizm, yellow
Z = 40.20 × 0.18 × 0.13 mm
Data collection top
CCD Smart Apex
diffractometer
9420 independent reflections
Radiation source: fine-focus sealed tube6049 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 30.6°, θmin = 1.7°
Absorption correction: ψ scan
(SADABS; Sheldrick, 1996)
h = 1314
Tmin = 0.46, Tmax = 0.59k = 2533
26336 measured reflectionsl = 1118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0464P)2]
where P = (Fo2 + 2Fc2)/3
9420 reflections(Δ/σ)max < 0.001
409 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Re(C26H20N2)(C2H3N)(CO)3](PF6)V = 3088.2 (3) Å3
Mr = 816.7Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.2648 (5) ŵ = 4.06 mm1
b = 23.4667 (11) ÅT = 293 K
c = 13.2040 (6) Å0.20 × 0.18 × 0.13 mm
β = 103.847 (1)°
Data collection top
CCD Smart Apex
diffractometer
9420 independent reflections
Absorption correction: ψ scan
(SADABS; Sheldrick, 1996)
6049 reflections with I > 2σ(I)
Tmin = 0.46, Tmax = 0.59Rint = 0.047
26336 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 1.03 e Å3
9420 reflectionsΔρmin = 0.50 e Å3
409 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.15826 (2)0.10161 (1)0.61269 (1)0.04285 (7)
P10.39210 (15)0.06783 (7)0.24644 (10)0.0628 (4)
F10.3868 (6)0.0785 (2)0.3612 (3)0.156 (2)
F20.3990 (6)0.0556 (2)0.1335 (3)0.163 (2)
F30.5145 (7)0.1030 (3)0.2608 (7)0.233 (4)
F40.2646 (5)0.0327 (3)0.2325 (5)0.209 (3)
F50.4679 (5)0.0110 (2)0.2817 (3)0.1388 (18)
F60.3117 (7)0.1231 (3)0.2162 (4)0.180 (3)
C10.0113 (5)0.1011 (2)0.4918 (4)0.0605 (13)
O10.0826 (4)0.09915 (18)0.4241 (3)0.0863 (14)
C20.0435 (5)0.0503 (3)0.6618 (4)0.0679 (16)
O20.0330 (4)0.0203 (3)0.6862 (3)0.118 (2)
C30.0735 (5)0.1628 (3)0.6659 (4)0.0712 (16)
O30.0143 (4)0.1977 (2)0.6969 (4)0.1159 (18)
N10.2529 (4)0.03391 (17)0.5509 (3)0.0493 (9)
C40.2920 (5)0.0038 (2)0.5138 (4)0.0534 (12)
C50.3409 (6)0.0520 (2)0.4648 (4)0.0711 (15)
H5A0.29030.08540.47280.107*
H5B0.43400.05820.49720.107*
H5C0.33070.04420.39190.107*
C60.1546 (5)0.1865 (3)0.3953 (4)0.085 (2)
H6A0.15630.21360.34100.128*
H6B0.08870.19790.43200.128*
H6C0.13230.14950.36510.128*
C70.2885 (4)0.1843 (2)0.4689 (3)0.0518 (12)
C80.3957 (5)0.2117 (2)0.4416 (3)0.0551 (12)
H80.38000.23050.37790.066*
C90.5223 (4)0.2120 (2)0.5037 (3)0.0461 (10)
C100.6350 (4)0.2394 (2)0.4704 (3)0.0488 (11)
C110.6770 (5)0.2171 (2)0.3872 (4)0.0604 (13)
H110.63090.18670.34950.073*
C120.7890 (6)0.2401 (3)0.3596 (5)0.0727 (15)
H120.81880.22450.30440.087*
C130.8546 (5)0.2850 (3)0.4129 (5)0.0697 (15)
H130.92820.30060.39330.084*
C140.8130 (6)0.3076 (3)0.4954 (4)0.0764 (16)
H140.85820.33850.53180.092*
C150.7057 (5)0.2848 (2)0.5241 (4)0.0662 (14)
H150.67910.30000.58100.079*
N20.3056 (3)0.15518 (16)0.5589 (3)0.0419 (8)
C160.4328 (4)0.15575 (17)0.6251 (3)0.0372 (9)
C170.5410 (4)0.18393 (18)0.6013 (3)0.0412 (9)
C180.6688 (4)0.1818 (2)0.6741 (3)0.0474 (11)
H180.74190.19990.65800.057*
C190.6850 (4)0.1541 (2)0.7653 (3)0.0466 (10)
H190.76900.15400.81170.056*
C200.5770 (4)0.12494 (19)0.7926 (3)0.0377 (9)
C210.4498 (4)0.12524 (18)0.7222 (3)0.0360 (8)
N30.3395 (3)0.09939 (14)0.7434 (3)0.0388 (8)
C220.2369 (5)0.0478 (3)0.8665 (4)0.0731 (17)
H22A0.16250.07380.85100.110*
H22B0.25940.03940.93980.110*
H22C0.21280.01320.82780.110*
C230.3544 (4)0.0741 (2)0.8372 (3)0.0438 (10)
C240.4770 (4)0.0734 (2)0.9088 (3)0.0451 (10)
H240.48300.05580.97280.054*
C250.5901 (4)0.09747 (19)0.8897 (3)0.0420 (10)
C260.7172 (4)0.0964 (2)0.9719 (3)0.0488 (11)
C270.7171 (6)0.1155 (3)1.0708 (4)0.0695 (16)
H270.63830.12961.08430.083*
C280.8330 (7)0.1139 (3)1.1499 (5)0.093 (2)
H280.83120.12651.21640.112*
C290.9501 (6)0.0940 (3)1.1311 (5)0.084 (2)
H291.02850.09411.18390.101*
C300.9512 (5)0.0740 (3)1.0337 (5)0.0729 (16)
H301.03050.05991.02110.088*
C310.8354 (4)0.0744 (3)0.9539 (4)0.0576 (13)
H310.83680.06010.88860.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.03226 (9)0.05381 (12)0.04068 (10)0.00301 (8)0.00519 (6)0.00153 (8)
P10.0658 (9)0.0751 (11)0.0457 (7)0.0005 (8)0.0099 (6)0.0000 (7)
F10.270 (6)0.138 (4)0.071 (3)0.074 (4)0.060 (3)0.001 (3)
F20.295 (7)0.146 (5)0.059 (2)0.019 (4)0.065 (3)0.000 (3)
F30.166 (6)0.255 (9)0.305 (9)0.146 (6)0.106 (6)0.105 (6)
F40.102 (4)0.265 (8)0.243 (7)0.070 (4)0.011 (4)0.029 (6)
F50.194 (5)0.122 (4)0.098 (3)0.074 (4)0.030 (3)0.001 (3)
F60.266 (7)0.163 (5)0.122 (4)0.111 (5)0.066 (4)0.068 (4)
C10.048 (3)0.065 (4)0.063 (3)0.011 (2)0.003 (2)0.011 (3)
O10.059 (2)0.110 (4)0.071 (3)0.019 (2)0.0224 (19)0.021 (2)
C20.045 (3)0.095 (5)0.056 (3)0.022 (3)0.004 (2)0.014 (3)
O20.070 (3)0.181 (6)0.091 (3)0.069 (3)0.002 (2)0.044 (3)
C30.041 (3)0.094 (5)0.075 (4)0.010 (3)0.009 (2)0.015 (3)
O30.074 (3)0.137 (5)0.133 (4)0.035 (3)0.018 (3)0.043 (3)
N10.053 (2)0.047 (2)0.046 (2)0.0042 (19)0.0080 (17)0.0009 (18)
C40.051 (3)0.058 (3)0.045 (3)0.001 (2)0.001 (2)0.007 (2)
C50.081 (4)0.067 (4)0.063 (3)0.010 (3)0.013 (3)0.012 (3)
C60.048 (3)0.117 (6)0.078 (4)0.005 (3)0.009 (3)0.045 (4)
C70.043 (2)0.061 (3)0.048 (3)0.001 (2)0.0039 (19)0.010 (2)
C80.055 (3)0.065 (3)0.044 (3)0.001 (2)0.009 (2)0.020 (2)
C90.047 (2)0.047 (3)0.046 (2)0.003 (2)0.0143 (19)0.005 (2)
C100.050 (3)0.046 (3)0.051 (3)0.003 (2)0.013 (2)0.007 (2)
C110.069 (3)0.053 (3)0.063 (3)0.008 (3)0.023 (3)0.002 (2)
C120.081 (4)0.065 (4)0.084 (4)0.002 (3)0.044 (3)0.005 (3)
C130.062 (3)0.063 (4)0.090 (4)0.014 (3)0.031 (3)0.013 (3)
C140.091 (4)0.066 (4)0.075 (4)0.032 (3)0.027 (3)0.002 (3)
C150.076 (4)0.059 (4)0.071 (3)0.016 (3)0.031 (3)0.003 (3)
N20.0352 (17)0.045 (2)0.0429 (19)0.0007 (15)0.0050 (14)0.0039 (16)
C160.036 (2)0.036 (2)0.038 (2)0.0002 (17)0.0073 (16)0.0023 (17)
C170.037 (2)0.043 (3)0.045 (2)0.0000 (18)0.0121 (17)0.0025 (18)
C180.038 (2)0.054 (3)0.051 (3)0.006 (2)0.0129 (18)0.000 (2)
C190.036 (2)0.055 (3)0.046 (2)0.0055 (19)0.0023 (17)0.002 (2)
C200.034 (2)0.044 (2)0.035 (2)0.0004 (17)0.0065 (16)0.0041 (17)
C210.0341 (19)0.040 (2)0.034 (2)0.0000 (17)0.0084 (15)0.0029 (17)
N30.0348 (17)0.046 (2)0.0360 (18)0.0047 (15)0.0092 (13)0.0001 (15)
C220.053 (3)0.115 (5)0.050 (3)0.026 (3)0.009 (2)0.024 (3)
C230.041 (2)0.054 (3)0.037 (2)0.004 (2)0.0107 (17)0.001 (2)
C240.047 (2)0.055 (3)0.032 (2)0.003 (2)0.0069 (17)0.0074 (19)
C250.037 (2)0.052 (3)0.036 (2)0.0039 (19)0.0078 (16)0.0001 (19)
C260.039 (2)0.060 (3)0.042 (2)0.004 (2)0.0010 (18)0.005 (2)
C270.067 (3)0.090 (5)0.048 (3)0.013 (3)0.006 (2)0.009 (3)
C280.087 (5)0.129 (6)0.049 (3)0.016 (4)0.013 (3)0.021 (3)
C290.057 (4)0.105 (6)0.075 (4)0.003 (3)0.013 (3)0.002 (4)
C300.036 (3)0.096 (5)0.081 (4)0.004 (3)0.003 (2)0.015 (3)
C310.042 (3)0.080 (4)0.050 (3)0.008 (2)0.008 (2)0.004 (3)
Geometric parameters (Å, º) top
Re1—C31.899 (6)C11—C121.395 (7)
Re1—C21.904 (5)C12—C131.355 (8)
Re1—C11.916 (5)C13—C141.368 (7)
Re1—N12.125 (4)C14—C151.358 (7)
Re1—N22.211 (3)N2—C161.387 (5)
Re1—N32.215 (3)C16—C171.392 (5)
P1—F11.549 (4)C16—C211.442 (5)
P1—F21.536 (4)C17—C181.429 (6)
P1—F31.477 (5)C18—C191.343 (6)
P1—F41.521 (5)C19—C201.420 (6)
P1—F51.558 (4)C20—C211.410 (5)
P1—F61.537 (5)C20—C251.412 (6)
C1—O11.148 (6)C21—N31.371 (5)
C2—O21.156 (6)N3—C231.348 (5)
C3—O31.152 (6)C22—C231.486 (6)
N1—C41.132 (6)C23—C241.382 (5)
C4—C51.450 (7)C24—C251.367 (6)
C6—C71.482 (6)C25—C261.484 (6)
C7—N21.345 (5)C26—C271.381 (7)
C7—C81.394 (6)C26—C311.390 (6)
C8—C91.360 (6)C27—C281.384 (7)
C9—C171.419 (6)C28—C291.366 (9)
C9—C101.480 (6)C29—C301.371 (8)
C10—C111.377 (6)C30—C311.387 (6)
C10—C151.384 (7)
C3—Re1—C288.7 (3)C11—C10—C9119.2 (4)
C3—Re1—C188.5 (2)C15—C10—C9122.2 (4)
C2—Re1—C181.5 (2)C10—C11—C12119.7 (5)
C3—Re1—N1179.1 (2)C13—C12—C11120.3 (5)
C2—Re1—N192.0 (2)C12—C13—C14120.2 (5)
C1—Re1—N191.0 (2)C15—C14—C13119.9 (5)
C3—Re1—N295.6 (2)C14—C15—C10121.4 (5)
C2—Re1—N2174.82 (19)C7—N2—C16117.2 (4)
C1—Re1—N2101.47 (17)C7—N2—Re1128.2 (3)
N1—Re1—N283.73 (15)C16—N2—Re1114.6 (3)
C3—Re1—N395.91 (18)N2—C16—C17122.9 (4)
C2—Re1—N3101.09 (16)N2—C16—C21116.8 (3)
C1—Re1—N3174.91 (18)C17—C16—C21120.3 (3)
N1—Re1—N384.58 (13)C16—C17—C9118.9 (4)
N2—Re1—N375.66 (12)C16—C17—C18119.0 (4)
F3—P1—F4178.8 (5)C9—C17—C18122.0 (4)
F3—P1—F289.6 (4)C19—C18—C17121.1 (4)
F4—P1—F291.1 (4)C18—C19—C20121.6 (4)
F3—P1—F687.1 (5)C21—C20—C25118.1 (4)
F4—P1—F691.9 (4)C21—C20—C19119.1 (4)
F2—P1—F693.0 (3)C25—C20—C19122.7 (4)
F3—P1—F190.7 (4)N3—C21—C20122.9 (4)
F4—P1—F188.6 (4)N3—C21—C16118.1 (3)
F2—P1—F1178.4 (3)C20—C21—C16118.9 (4)
F6—P1—F188.6 (3)C23—N3—C21117.7 (3)
F3—P1—F595.3 (4)C23—N3—Re1128.0 (3)
F4—P1—F585.7 (4)C21—N3—Re1114.3 (2)
F2—P1—F589.7 (3)N3—C23—C24121.2 (4)
F6—P1—F5176.5 (3)N3—C23—C22120.1 (4)
F1—P1—F588.7 (2)C24—C23—C22118.7 (4)
O1—C1—Re1174.8 (5)C25—C24—C23122.9 (4)
O2—C2—Re1175.5 (5)C24—C25—C20117.1 (4)
O3—C3—Re1175.3 (5)C24—C25—C26119.6 (4)
C4—N1—Re1173.8 (4)C20—C25—C26123.2 (4)
N1—C4—C5179.2 (5)C27—C26—C31118.7 (4)
N2—C7—C8121.2 (4)C27—C26—C25119.1 (4)
N2—C7—C6120.1 (4)C31—C26—C25122.1 (4)
C8—C7—C6118.7 (4)C26—C27—C28120.7 (5)
C9—C8—C7123.1 (4)C29—C28—C27120.5 (6)
C8—C9—C17116.6 (4)C28—C29—C30119.5 (5)
C8—C9—C10121.7 (4)C29—C30—C31120.8 (5)
C17—C9—C10121.7 (4)C30—C31—C26119.9 (5)
C11—C10—C15118.4 (4)
C24—C25—C26—C2751.4 (7)H6C—C6—C7—N269
C8—C9—C10—C1165.9 (6)H22A—C22—C23—N347
H6A—C6—C7—N2171H22B—C22—C23—N3167
H6B—C6—C7—N251H22C—C22—C23—N372
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···F1i0.96 (1)2.34 (1)3.226 (8)154 (1)
C11—H11···F30.93 (1)2.45 (1)3.377 (9)176 (1)
C24—H24···F2ii0.93 (1)2.47 (1)3.280 (6)145 (1)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Re(C26H20N2)(C2H3N)(CO)3](PF6)
Mr816.7
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.2648 (5), 23.4667 (11), 13.2040 (6)
β (°) 103.847 (1)
V3)3088.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)4.06
Crystal size (mm)0.20 × 0.18 × 0.13
Data collection
DiffractometerCCD Smart Apex
Absorption correctionψ scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.46, 0.59
No. of measured, independent and
observed [I > 2σ(I)] reflections
26336, 9420, 6049
Rint0.047
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.100, 0.93
No. of reflections9420
No. of parameters409
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.03, 0.50

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Re1—C31.899 (6)C11—C121.395 (7)
Re1—C21.904 (5)C12—C131.355 (8)
Re1—C11.916 (5)C13—C141.368 (7)
Re1—N12.125 (4)C14—C151.358 (7)
Re1—N22.211 (3)N2—C161.387 (5)
Re1—N32.215 (3)C16—C171.392 (5)
P1—F11.549 (4)C16—C211.442 (5)
P1—F21.536 (4)C17—C181.429 (6)
P1—F31.477 (5)C18—C191.343 (6)
P1—F41.521 (5)C19—C201.420 (6)
P1—F51.558 (4)C20—C211.410 (5)
P1—F61.537 (5)C20—C251.412 (6)
C1—O11.148 (6)C21—N31.371 (5)
C2—O21.156 (6)N3—C231.348 (5)
C3—O31.152 (6)C22—C231.486 (6)
N1—C41.132 (6)C23—C241.382 (5)
C4—C51.450 (7)C24—C251.367 (6)
C6—C71.482 (6)C25—C261.484 (6)
C7—N21.345 (5)C26—C271.381 (7)
C7—C81.394 (6)C26—C311.390 (6)
C8—C91.360 (6)C27—C281.384 (7)
C9—C171.419 (6)C28—C291.366 (9)
C9—C101.480 (6)C29—C301.371 (8)
C10—C111.377 (6)C30—C311.387 (6)
C10—C151.384 (7)
C3—Re1—N1179.1 (2)F6—P1—F5176.5 (3)
C2—Re1—N2174.82 (19)O1—C1—Re1174.8 (5)
C1—Re1—N3174.91 (18)O2—C2—Re1175.5 (5)
N2—Re1—N375.66 (12)O3—C3—Re1175.3 (5)
F3—P1—F4178.8 (5)C4—N1—Re1173.8 (4)
F2—P1—F1178.4 (3)N1—C4—C5179.2 (5)
C24—C25—C26—C2751.4 (7)C8—C9—C10—C1165.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···F1i0.960 (6)2.337 (5)3.226 (8)153.7 (3)
C11—H11···F30.932 (5)2.447 (8)3.377 (9)176.2 (4)
C24—H24···F2ii0.929 (4)2.474 (5)3.280 (6)145.1 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds