Download citation
Download citation
link to html
The title compound, C17H17NO2S, is formed by reaction of 2-azido­carbonyl­oxy-4-phenyl-1-thio­phenyl­butane with iron(II) chloride as catalyst. This is the first example of the 1,4,3-oxa­thia­zin-2(6H)-one ring system.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680100304X/cv6005sup1.cif
Contains datablocks bs377b, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680100304X/cv6005Isup2.hkl
Contains datablock I

CCDC reference: 159861

Key indicators

  • Single-crystal X-ray study
  • T = 213 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.038
  • wR factor = 0.105
  • Data-to-parameter ratio = 14.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

Comment top

During our studies on iron(II)-catalyzed nitrogen transfer, we developed an intramolecular variant generating cyclic systems (Bach et al., 2000a,b; Bach & Körber, 1998, 1999, 2000). By treating a thio-substituted alkoxycarbonylazide with catalytic amounts of iron(II) chloride in dichloromethane, the title compound, (I), was precipitated as a mixture of diastereoisomers (55:45). After recrystallization it could be obtained in diastereoisomerically pure form.

The interesting 1,4,3-oxathiazin-2(6H)-one ring system constitutes a new class of heterocycles. The ring atoms N3, C2 with O2, O1 and C6 are approximately planar [maximum deviation from the best plane 0.047 (1) Å], S4 is 0.559 (1) Å and C5 is 1.030 (2) Å above this plane. The phenyl rest at S4 shows a remarkable rotation towards the N5 atom [torsion angle N3—S4—C7—C12 - 24.4 (2)°]. The corresponding 1,4,3-oxathiazin-2(6H)-one 4-oxides have been prepared earlier and an X-ray structure analysis was reported (Hwang et al., 1987). Heterocyclic sulfoximines show a wide variety of physiological activities (Kennewell & Taylor 1980).

Experimental top

The title compound was prepared by reaction of 2-azidocarbonyloxy-4-phenyl-1-thiophenylbutane with iron(II) chloride in dichloromethane according to the scheme in the Comment. The product was purified by chromatography and then dissolved in dichloromethane/tert-butyl methyl ether. Upon standing at room temperature, crystals suitable for X-ray analysis were obtained.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. DIAMOND (Brandenburg, 1999) drawing of a molecule of (I) with the atomic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
(4SR,6SR)-6-(2-Phenylethyl)-4-phenyl-1,4,3-oxathiazin-2(6H)-one top
Crystal data top
C17H17NO2SDx = 1.359 Mg m3
Mr = 299.38Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 25 reflections
a = 9.0561 (4) Åθ = 18.2–19.9°
b = 11.5330 (5) ŵ = 1.99 mm1
c = 28.0118 (13) ÅT = 213 K
V = 2925.7 (2) Å3Square plate, colourless
Z = 80.25 × 0.22 × 0.06 mm
F(000) = 1264
Data collection top
Enraf-Nonius CAD-4
diffractometer
2222 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 70.3°, θmin = 3.2°
ω scansh = 011
Absorption correction: numerical
via indexed faces (SHELXTL; Sheldrick, 1996)
k = 014
Tmin = 0.636, Tmax = 0.886l = 3434
5578 measured reflections2 standard reflections every 120 min
2779 independent reflections intensity decay: 1.9%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.7475P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2779 reflectionsΔρmax = 0.26 e Å3
191 parametersΔρmin = 0.49 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00049 (9)
Crystal data top
C17H17NO2SV = 2925.7 (2) Å3
Mr = 299.38Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 9.0561 (4) ŵ = 1.99 mm1
b = 11.5330 (5) ÅT = 213 K
c = 28.0118 (13) Å0.25 × 0.22 × 0.06 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2222 reflections with I > 2σ(I)
Absorption correction: numerical
via indexed faces (SHELXTL; Sheldrick, 1996)
Rint = 0.046
Tmin = 0.636, Tmax = 0.8862 standard reflections every 120 min
5578 measured reflections intensity decay: 1.9%
2779 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
2779 reflectionsΔρmin = 0.49 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41569 (15)0.74573 (11)0.57084 (5)0.0282 (3)
C20.3501 (2)0.65490 (16)0.54712 (7)0.0287 (4)
O20.39286 (16)0.55847 (11)0.55811 (5)0.0360 (4)
N30.23811 (19)0.67350 (14)0.51586 (6)0.0330 (4)
S40.21478 (5)0.79553 (4)0.488402 (17)0.02732 (15)
C50.3537 (2)0.89111 (15)0.51218 (6)0.0260 (4)
H5B0.44930.87710.49690.031*
H5A0.32590.97240.50730.031*
C60.3606 (2)0.86256 (15)0.56495 (7)0.0252 (4)
H60.26110.86930.57930.030*
C70.2856 (2)0.77366 (17)0.42934 (7)0.0289 (4)
C80.2289 (2)0.84315 (18)0.39375 (7)0.0331 (5)
H80.15620.89880.40070.040*
C90.2810 (3)0.8295 (2)0.34747 (8)0.0432 (6)
H90.24420.87630.32270.052*
C100.3875 (3)0.7465 (2)0.33799 (9)0.0498 (6)
H100.42360.73770.30670.060*
C110.4415 (3)0.6763 (2)0.37408 (9)0.0484 (6)
H110.51280.61950.36710.058*
C120.3911 (2)0.68919 (19)0.42039 (8)0.0379 (5)
H120.42730.64200.44510.045*
C130.4683 (2)0.94188 (17)0.59093 (7)0.0295 (4)
H13A0.44041.02260.58480.035*
H13B0.56740.92990.57780.035*
C140.4737 (2)0.92227 (18)0.64498 (7)0.0330 (4)
H14B0.49520.84020.65090.040*
H14A0.55590.96750.65810.040*
C150.3349 (2)0.95408 (17)0.67191 (7)0.0318 (4)
C160.2552 (3)1.05343 (18)0.66148 (8)0.0382 (5)
H160.28721.10240.63670.046*
C170.1284 (3)1.0819 (2)0.68708 (9)0.0460 (6)
H170.07421.14840.67880.055*
C180.0817 (3)1.0134 (2)0.72454 (9)0.0486 (6)
H180.00251.03370.74230.058*
C190.1602 (3)0.9152 (2)0.73545 (8)0.0487 (6)
H190.12960.86770.76090.058*
C200.2845 (3)0.8853 (2)0.70924 (8)0.0407 (5)
H200.33590.81700.71690.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0283 (7)0.0260 (6)0.0303 (7)0.0006 (5)0.0050 (6)0.0000 (6)
C20.0261 (9)0.0319 (10)0.0281 (10)0.0038 (8)0.0038 (8)0.0003 (8)
O20.0386 (8)0.0278 (7)0.0417 (9)0.0003 (6)0.0017 (7)0.0045 (6)
N30.0298 (9)0.0312 (8)0.0381 (10)0.0094 (7)0.0068 (8)0.0054 (7)
S40.0214 (2)0.0337 (3)0.0269 (3)0.00003 (18)0.00068 (17)0.00076 (19)
C50.0264 (9)0.0254 (9)0.0261 (10)0.0012 (7)0.0005 (8)0.0009 (7)
C60.0244 (9)0.0258 (9)0.0255 (9)0.0021 (8)0.0018 (7)0.0009 (8)
C70.0235 (10)0.0356 (10)0.0277 (10)0.0049 (8)0.0002 (8)0.0045 (8)
C80.0279 (10)0.0383 (11)0.0332 (11)0.0039 (9)0.0001 (9)0.0002 (9)
C90.0406 (13)0.0565 (14)0.0325 (12)0.0103 (11)0.0020 (9)0.0026 (11)
C100.0428 (13)0.0747 (16)0.0319 (12)0.0082 (12)0.0077 (10)0.0150 (13)
C110.0378 (13)0.0629 (15)0.0444 (14)0.0062 (11)0.0022 (10)0.0188 (12)
C120.0315 (11)0.0446 (12)0.0376 (12)0.0043 (9)0.0030 (9)0.0093 (10)
C130.0289 (9)0.0320 (9)0.0276 (10)0.0043 (8)0.0004 (8)0.0014 (8)
C140.0337 (10)0.0364 (10)0.0288 (10)0.0042 (9)0.0062 (8)0.0002 (9)
C150.0373 (11)0.0351 (10)0.0230 (9)0.0068 (9)0.0050 (8)0.0039 (8)
C160.0474 (12)0.0347 (11)0.0323 (11)0.0005 (9)0.0016 (10)0.0005 (9)
C170.0488 (14)0.0434 (12)0.0458 (14)0.0046 (11)0.0003 (11)0.0051 (11)
C180.0494 (14)0.0563 (14)0.0399 (13)0.0014 (12)0.0089 (11)0.0096 (12)
C190.0555 (15)0.0573 (14)0.0333 (12)0.0081 (12)0.0082 (12)0.0031 (11)
C200.0482 (14)0.0424 (12)0.0316 (11)0.0013 (10)0.0020 (10)0.0034 (10)
Geometric parameters (Å, º) top
O1—C21.375 (2)C9—C101.385 (3)
O1—C61.446 (2)C10—C111.384 (4)
C2—O21.217 (2)C11—C121.383 (3)
C2—N31.357 (3)C13—C141.532 (3)
N3—S41.6176 (17)C14—C151.511 (3)
S4—C71.792 (2)C15—C161.385 (3)
S4—C51.8002 (19)C15—C201.389 (3)
C5—C61.516 (2)C16—C171.393 (3)
C6—C131.522 (3)C17—C181.380 (3)
C7—C81.378 (3)C18—C191.372 (4)
C7—C121.387 (3)C19—C201.387 (3)
C8—C91.388 (3)
C2—O1—C6120.37 (15)C7—C8—C9118.9 (2)
O2—C2—N3123.06 (18)C10—C9—C8119.6 (2)
O2—C2—O1115.86 (18)C11—C10—C9120.7 (2)
N3—C2—O1120.94 (17)C10—C11—C12120.4 (2)
C2—N3—S4122.82 (14)C11—C12—C7118.2 (2)
N3—S4—C7105.65 (9)C6—C13—C14113.86 (16)
N3—S4—C5105.40 (9)C15—C14—C13115.52 (17)
C7—S4—C5100.24 (9)C16—C15—C20117.4 (2)
C6—C5—S4104.89 (12)C16—C15—C14121.94 (19)
O1—C6—C5109.15 (14)C20—C15—C14120.67 (19)
O1—C6—C13106.54 (15)C15—C16—C17121.1 (2)
C5—C6—C13111.25 (15)C18—C17—C16120.6 (2)
C8—C7—C12122.3 (2)C19—C18—C17118.9 (2)
C8—C7—S4116.91 (15)C18—C19—C20120.5 (2)
C12—C7—S4120.81 (16)C19—C20—C15121.5 (2)
C6—O1—C2—O2172.27 (17)C8—C9—C10—C110.7 (4)
C6—O1—C2—N33.6 (3)C9—C10—C11—C120.9 (4)
O2—C2—N3—S4159.80 (16)C10—C11—C12—C70.2 (3)
O1—C2—N3—S424.6 (3)C8—C7—C12—C110.9 (3)
C2—N3—S4—C7101.39 (18)S4—C7—C12—C11179.94 (17)
C2—N3—S4—C54.2 (2)O1—C6—C13—C1464.6 (2)
N3—S4—C5—C638.78 (14)C5—C6—C13—C14176.58 (16)
C7—S4—C5—C6148.29 (13)C6—C13—C14—C1567.0 (2)
C2—O1—C6—C553.1 (2)C13—C14—C15—C1641.3 (3)
C2—O1—C6—C13173.30 (16)C13—C14—C15—C20140.4 (2)
S4—C5—C6—O165.97 (16)C20—C15—C16—C170.9 (3)
S4—C5—C6—C13176.75 (13)C14—C15—C16—C17179.2 (2)
N3—S4—C7—C8154.71 (15)C15—C16—C17—C182.0 (4)
C5—S4—C7—C895.97 (16)C16—C17—C18—C191.5 (4)
N3—S4—C7—C1224.42 (18)C17—C18—C19—C200.0 (4)
C5—S4—C7—C1284.90 (17)C18—C19—C20—C151.1 (4)
C12—C7—C8—C91.1 (3)C16—C15—C20—C190.6 (3)
S4—C7—C8—C9179.77 (16)C14—C15—C20—C19177.7 (2)
C7—C8—C9—C100.3 (3)

Experimental details

Crystal data
Chemical formulaC17H17NO2S
Mr299.38
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)213
a, b, c (Å)9.0561 (4), 11.5330 (5), 28.0118 (13)
V3)2925.7 (2)
Z8
Radiation typeCu Kα
µ (mm1)1.99
Crystal size (mm)0.25 × 0.22 × 0.06
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionNumerical
via indexed faces (SHELXTL; Sheldrick, 1996)
Tmin, Tmax0.636, 0.886
No. of measured, independent and
observed [I > 2σ(I)] reflections
5578, 2779, 2222
Rint0.046
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.05
No. of reflections2779
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.49

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1993), CAD-4 EXPRESS, XCAD4 (Harms, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1999), SHELXL97.

Selected geometric parameters (Å, º) top
O1—C21.375 (2)S4—C51.8002 (19)
O1—C61.446 (2)C5—C61.516 (2)
C2—O21.217 (2)C6—C131.522 (3)
C2—N31.357 (3)C13—C141.532 (3)
N3—S41.6176 (17)C14—C151.511 (3)
S4—C71.792 (2)
C2—O1—C6120.37 (15)C6—C5—S4104.89 (12)
O2—C2—N3123.06 (18)O1—C6—C5109.15 (14)
O2—C2—O1115.86 (18)O1—C6—C13106.54 (15)
N3—C2—O1120.94 (17)C5—C6—C13111.25 (15)
C2—N3—S4122.82 (14)C8—C7—S4116.91 (15)
N3—S4—C7105.65 (9)C12—C7—S4120.81 (16)
N3—S4—C5105.40 (9)C6—C13—C14113.86 (16)
C7—S4—C5100.24 (9)C15—C14—C13115.52 (17)
C6—O1—C2—O2172.27 (17)C2—O1—C6—C13173.30 (16)
C6—O1—C2—N33.6 (3)S4—C5—C6—O165.97 (16)
O2—C2—N3—S4159.80 (16)S4—C5—C6—C13176.75 (13)
O1—C2—N3—S424.6 (3)N3—S4—C7—C8154.71 (15)
C2—N3—S4—C7101.39 (18)C5—S4—C7—C895.97 (16)
C2—N3—S4—C54.2 (2)O1—C6—C13—C1464.6 (2)
N3—S4—C5—C638.78 (14)C5—C6—C13—C14176.58 (16)
C7—S4—C5—C6148.29 (13)C6—C13—C14—C1567.0 (2)
C2—O1—C6—C553.1 (2)C13—C14—C15—C1641.3 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds