Download citation
Download citation
link to html
In the title compound, C32H28Si2, the configuration at the C=C double bond is E [-179.1 (2)°], and two Si atoms in di­phenyl­silyl and tri­phenyl­silyl groups bridged by the C=C double bond [1.292 (5) Å] retain the overall tetrahedral environment of the C and H atoms with an average Si-C bond length of 1.864 (1) Å and Si-H length of 1.35 (3) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801003439/cv6003sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801003439/cv6003Isup2.hkl
Contains datablock I

CCDC reference: 159869

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.063
  • wR factor = 0.146
  • Data-to-parameter ratio = 14.8

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_420 Alert C D-H Without Acceptor Si(2) - H(1) ?
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Transition metal-catalyzed hydrosilylation of alkynes provides the most straightforward method for the preparation of vinylsilanes. In the course of our studies (Lee & Han, 1998; Lee et al., 1996), we recently synthesized various (E)-vinylsilanes via stereoselective hydrosilylation using an Rh/CO catalytic system. These vinylsilanes have synthetic value because they are very versatile intermediates in organic synthesis, as well as in organosilicon chemistry. Particularly, the title (E)-vinylsilane, (I), containing an Si—H bond has the possibilities of further transformations. We present here the synthesis and the X-ray structure of (I).

Compound (I) consists of diphenylsilyl- and triphenylsilyl groups interconnected by \ CC double bond, as shown in Fig. 1.

The Si—C bond lengths range from 1.852 (4) to 1.875 (3) Å, with a mean value of 1.864 (1) Å and the C—Si—C angles range from 108.66 (16) to 111.20 (19)°, with a mean value of 109.75 (6)° (see Table 1). All these values are similiar to those found in platinum-catalyzed hydrosilylation of alkynes (Lewis et al., 1991). The geometries of the five phenyl rings are very similar to one another; the C—C bond lengths average to a value of 1.374 (1) Å and are all planar with a maximum deviation of 0.012 (3) Å from the mean plane. The dihedral angles between neighbouring phenyl rings range from 72.91 (14) to 74.12 (11)°, with an average of 73.58 (6)°. The C19C20 bond length [1.292 (5) Å] bridging the two silyl groups clearly displays double-bond character, and the similiar bond length 1.294 (7) Å was found in platinum-catalyzed hydrosilylation of alkynes (Lewis et al.,. 1991). The four atoms Si1, C19, C20 and Si2, are planar within 0.007 (2) Å with a torsion angle Si1—C19—C20—Si2 of -179.1 (2)°.

The Si2—H length is 1.35 (3) Å which is somewhat shorter than the value of 1.42 (6) Å in tris[8-(dimethylamino)naphthyl]silane (Breliere et al., 1994), but only 1σ different from it.

The closest intermolecular distance H24···H30(-1 + x,1 + y,z) of 2.52 Å suggests that the molcecular packing is governed only by van der Waals forces.

Experimental top

The title compound, (I), was prepared using the stereoselective hydrosilylation of triphenylsilylacetylene with diphenylsilane catalyzed by rhodium metal in the presence of carbon monoxide at atmospheric pressure. The details of the synthesis will be reported elsewhere. Colorless crystals (I) (m.p. 413.2 K) were obtained by slow evaporation from a solution in n-hexane–dichloromethane (3:1 v/v) at room temperature.

Refinement top

Three H atoms H1, H19 and H20 bound to the Si2, C19 and C20 atoms were found from a difference Fourier synthesis and refined isotropically, and the other H atoms were located in calculated positions and allowed to ride on their attached C atoms. The highest peak are 0.98 Å from H1 and 1.65 Å from C1, respectively.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) with the atom-numbering scheme and displacement ellipsoids at the 35% probability level.
(I) top
Crystal data top
C32H28Si2Z = 2
Mr = 468.72F(000) = 496
Triclinic, P1Dx = 1.147 Mg m3
a = 11.1046 (12) ÅMo Kα radiation, λ = 0.71069 Å
b = 11.4205 (11) ÅCell parameters from 25 reflections
c = 12.7004 (9) Åθ = 10.0–14.3°
α = 72.632 (7)°µ = 0.15 mm1
β = 78.905 (7)°T = 293 K
γ = 62.198 (11)°Plate, colorless
V = 1357.1 (2) Å30.40 × 0.26 × 0.13 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2575 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
non–profiled ω/2θ scansh = 1213
Absorption correction: ψ scan
(North et al., 1968)
k = 1213
Tmin = 0.944, Tmax = 0.981l = 015
4973 measured reflections3 standard reflections every 300 min
4739 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.2159P]
where P = (Fo2 + 2Fc2)/3
4739 reflections(Δ/σ)max < 0.001
321 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C32H28Si2γ = 62.198 (11)°
Mr = 468.72V = 1357.1 (2) Å3
Triclinic, P1Z = 2
a = 11.1046 (12) ÅMo Kα radiation
b = 11.4205 (11) ŵ = 0.15 mm1
c = 12.7004 (9) ÅT = 293 K
α = 72.632 (7)°0.40 × 0.26 × 0.13 mm
β = 78.905 (7)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2575 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.024
Tmin = 0.944, Tmax = 0.9813 standard reflections every 300 min
4973 measured reflections intensity decay: 1%
4739 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.02Δρmax = 0.23 e Å3
4739 reflectionsΔρmin = 0.18 e Å3
321 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.34449 (10)0.32786 (10)0.55899 (8)0.0513 (3)
Si20.34458 (12)0.46792 (12)0.17876 (8)0.0666 (4)
H10.424 (3)0.530 (3)0.169 (2)0.048 (8)*
C10.5137 (3)0.2244 (3)0.6203 (3)0.0495 (8)
C20.6126 (4)0.2719 (4)0.5972 (3)0.0689 (11)
H20.59450.35650.54850.083*
C30.7365 (4)0.1984 (5)0.6438 (4)0.0867 (14)
H30.80010.23380.62740.104*
C40.7661 (4)0.0731 (5)0.7144 (4)0.0809 (12)
H40.84950.02350.74670.097*
C50.6733 (4)0.0208 (4)0.7375 (3)0.0745 (11)
H50.69400.06520.78440.089*
C60.5485 (4)0.0954 (4)0.6912 (3)0.0592 (10)
H60.48600.05870.70770.071*
C70.2424 (3)0.4776 (3)0.6223 (3)0.0501 (9)
C80.2855 (4)0.4962 (4)0.7088 (3)0.0683 (11)
H80.37010.43410.73620.082*
C90.2038 (5)0.6067 (4)0.7549 (4)0.0915 (14)
H90.23380.61670.81380.110*
C100.0804 (5)0.7005 (4)0.7152 (4)0.0914 (14)
H100.02640.77410.74680.110*
C110.0366 (4)0.6858 (4)0.6290 (4)0.0853 (13)
H110.04770.74950.60160.102*
C120.1167 (4)0.5768 (4)0.5822 (3)0.0716 (11)
H120.08630.56930.52230.086*
C130.2532 (3)0.2185 (3)0.5873 (3)0.0481 (8)
C140.1422 (3)0.2334 (4)0.6644 (3)0.0574 (9)
H140.10720.30510.69900.069*
C150.0833 (4)0.1449 (4)0.6908 (3)0.0695 (11)
H150.00960.15680.74270.083*
C160.1333 (4)0.0394 (4)0.6405 (4)0.0750 (12)
H160.09360.02050.65830.090*
C170.2423 (4)0.0215 (4)0.5635 (3)0.0717 (11)
H170.27670.05050.52940.086*
C180.2994 (3)0.1108 (4)0.5378 (3)0.0605 (10)
H180.37220.09870.48490.073*
C190.3716 (5)0.3919 (4)0.4085 (3)0.0660 (11)
H190.435 (4)0.420 (4)0.379 (3)0.109 (17)*
C200.3069 (5)0.4040 (4)0.3286 (3)0.0728 (12)
H200.238 (4)0.370 (4)0.349 (3)0.102 (15)*
C210.1857 (4)0.5924 (4)0.1083 (3)0.0661 (11)
C220.0754 (5)0.5628 (5)0.1157 (4)0.0861 (13)
H220.08010.47900.15800.103*
C230.0397 (6)0.6562 (8)0.0614 (5)0.121 (2)
H230.11240.63510.06670.145*
C240.0486 (7)0.7795 (8)0.0003 (6)0.144 (3)
H240.12770.84290.03600.173*
C250.0576 (8)0.8102 (6)0.0096 (5)0.136 (3)
H250.05210.89380.05340.163*
C260.1732 (6)0.7190 (5)0.0449 (4)0.0930 (14)
H260.24430.74250.03930.112*
C270.4393 (4)0.3197 (4)0.1137 (3)0.0611 (10)
C280.4030 (4)0.3177 (4)0.0162 (3)0.0736 (11)
H280.32850.39240.01850.088*
C290.4750 (5)0.2072 (5)0.0307 (4)0.0927 (14)
H290.44850.20820.09620.111*
C300.5847 (5)0.0969 (5)0.0189 (4)0.0898 (14)
H300.63320.02280.01290.108*
C310.6233 (4)0.0952 (5)0.1147 (4)0.0866 (14)
H310.69830.02000.14840.104*
C320.5513 (4)0.2048 (5)0.1619 (3)0.0805 (12)
H320.57830.20190.22790.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0526 (6)0.0554 (6)0.0465 (6)0.0226 (5)0.0048 (5)0.0136 (5)
Si20.0840 (8)0.0771 (8)0.0468 (6)0.0442 (7)0.0050 (6)0.0104 (6)
C10.046 (2)0.051 (2)0.054 (2)0.0201 (18)0.0009 (17)0.0212 (18)
C20.059 (3)0.054 (2)0.091 (3)0.025 (2)0.014 (2)0.007 (2)
C30.055 (3)0.079 (3)0.128 (4)0.033 (2)0.021 (3)0.013 (3)
C40.049 (2)0.083 (3)0.101 (3)0.016 (2)0.022 (2)0.019 (3)
C50.064 (3)0.067 (3)0.077 (3)0.019 (2)0.017 (2)0.005 (2)
C60.057 (2)0.065 (3)0.059 (2)0.032 (2)0.0011 (19)0.014 (2)
C70.058 (2)0.044 (2)0.044 (2)0.0206 (18)0.0060 (17)0.0064 (16)
C80.074 (3)0.057 (2)0.067 (3)0.015 (2)0.020 (2)0.017 (2)
C90.120 (4)0.070 (3)0.083 (3)0.026 (3)0.016 (3)0.037 (3)
C100.098 (4)0.044 (3)0.104 (4)0.007 (3)0.001 (3)0.024 (3)
C110.064 (3)0.058 (3)0.100 (4)0.004 (2)0.009 (3)0.009 (3)
C120.071 (3)0.065 (3)0.068 (3)0.019 (2)0.017 (2)0.011 (2)
C130.044 (2)0.050 (2)0.046 (2)0.0142 (17)0.0080 (16)0.0138 (17)
C140.053 (2)0.061 (2)0.059 (2)0.021 (2)0.0054 (19)0.0210 (19)
C150.054 (2)0.083 (3)0.076 (3)0.034 (2)0.004 (2)0.023 (2)
C160.076 (3)0.073 (3)0.093 (3)0.047 (3)0.011 (3)0.016 (3)
C170.070 (3)0.064 (3)0.087 (3)0.025 (2)0.009 (2)0.032 (2)
C180.047 (2)0.061 (2)0.070 (3)0.019 (2)0.0002 (19)0.021 (2)
C190.075 (3)0.074 (3)0.056 (3)0.037 (3)0.006 (2)0.016 (2)
C200.079 (3)0.091 (3)0.055 (3)0.044 (3)0.001 (2)0.017 (2)
C210.086 (3)0.064 (3)0.044 (2)0.030 (2)0.006 (2)0.017 (2)
C220.082 (3)0.094 (3)0.075 (3)0.036 (3)0.002 (3)0.017 (3)
C230.080 (4)0.165 (6)0.097 (4)0.024 (4)0.002 (3)0.054 (4)
C240.108 (5)0.139 (7)0.091 (5)0.039 (5)0.020 (5)0.045 (5)
C250.181 (7)0.070 (4)0.089 (4)0.001 (5)0.016 (5)0.014 (3)
C260.132 (4)0.070 (3)0.070 (3)0.040 (3)0.006 (3)0.013 (3)
C270.066 (3)0.069 (3)0.043 (2)0.034 (2)0.0005 (19)0.0018 (19)
C280.080 (3)0.067 (3)0.061 (3)0.020 (2)0.015 (2)0.011 (2)
C290.113 (4)0.076 (3)0.077 (3)0.021 (3)0.017 (3)0.028 (3)
C300.087 (4)0.065 (3)0.097 (4)0.021 (3)0.006 (3)0.020 (3)
C310.065 (3)0.075 (3)0.088 (4)0.017 (3)0.011 (3)0.005 (3)
C320.077 (3)0.089 (3)0.064 (3)0.033 (3)0.017 (2)0.001 (3)
Geometric parameters (Å, º) top
Si1—C191.852 (4)C14—H140.9300
Si1—C11.864 (3)C15—C161.365 (5)
Si1—C131.868 (3)C15—H150.9300
Si1—C71.875 (3)C16—C171.376 (5)
Si2—C211.855 (4)C16—H160.9300
Si2—C201.865 (4)C17—C181.370 (5)
Si2—C271.869 (4)C17—H170.9300
Si2—H11.35 (3)C18—H180.9300
C1—C21.388 (4)C19—C201.292 (5)
C1—C61.393 (4)C19—H190.89 (4)
C2—C31.374 (5)C20—H200.97 (4)
C2—H20.9300C21—C261.386 (5)
C3—C41.367 (5)C21—C221.395 (5)
C3—H30.9300C22—C231.370 (6)
C4—C51.364 (5)C22—H220.9300
C4—H40.9300C23—C241.359 (8)
C5—C61.380 (5)C23—H230.9300
C5—H50.9300C24—C251.355 (8)
C6—H60.9300C24—H240.9300
C7—C81.384 (4)C25—C261.370 (7)
C7—C121.395 (5)C25—H250.9300
C8—C91.388 (5)C26—H260.9300
C8—H80.9300C27—C281.383 (5)
C9—C101.361 (6)C27—C321.391 (5)
C9—H90.9300C28—C291.382 (5)
C10—C111.362 (6)C28—H280.9300
C10—H100.9300C29—C301.363 (6)
C11—C121.378 (5)C29—H290.9300
C11—H110.9300C30—C311.358 (6)
C12—H120.9300C30—H300.9300
C13—C181.386 (4)C31—C321.377 (6)
C13—C141.395 (4)C31—H310.9300
C14—C151.376 (4)C32—H320.9300
C19—Si1—C1108.84 (18)C16—C15—C14119.8 (4)
C19—Si1—C13111.04 (18)C16—C15—H15120.1
C1—Si1—C13108.81 (15)C14—C15—H15120.1
C19—Si1—C7108.66 (16)C15—C16—C17120.3 (4)
C1—Si1—C7109.48 (15)C15—C16—H16119.9
C13—Si1—C7109.98 (15)C17—C16—H16119.9
C21—Si2—C20111.20 (19)C18—C17—C16119.2 (4)
C21—Si2—C27110.76 (17)C18—C17—H17120.4
C20—Si2—C27109.02 (18)C16—C17—H17120.4
C21—Si2—H1108.6 (11)C17—C18—C13122.6 (3)
C20—Si2—H1108.4 (11)C17—C18—H18118.7
C27—Si2—H1108.8 (11)C13—C18—H18118.7
C2—C1—C6116.2 (3)C20—C19—Si1129.0 (4)
C2—C1—Si1121.5 (3)C20—C19—H19107 (3)
C6—C1—Si1122.3 (3)Si1—C19—H19124 (3)
C3—C2—C1122.2 (4)C19—C20—Si2125.4 (4)
C3—C2—H2118.9C19—C20—H20116 (2)
C1—C2—H2118.9Si2—C20—H20118 (2)
C4—C3—C2119.9 (4)C26—C21—C22117.4 (4)
C4—C3—H3120.1C26—C21—Si2120.6 (4)
C2—C3—H3120.1C22—C21—Si2122.0 (3)
C5—C4—C3120.0 (4)C23—C22—C21120.6 (5)
C5—C4—H4120.0C23—C22—H22119.7
C3—C4—H4120.0C21—C22—H22119.7
C4—C5—C6120.0 (4)C24—C23—C22120.5 (6)
C4—C5—H5120.0C24—C23—H23119.7
C6—C5—H5120.0C22—C23—H23119.7
C5—C6—C1121.8 (3)C25—C24—C23120.0 (7)
C5—C6—H6119.1C25—C24—H24120.0
C1—C6—H6119.1C23—C24—H24120.0
C8—C7—C12116.9 (3)C24—C25—C26120.5 (7)
C8—C7—Si1123.2 (3)C24—C25—H25119.8
C12—C7—Si1119.9 (3)C26—C25—H25119.8
C7—C8—C9120.8 (4)C25—C26—C21121.0 (5)
C7—C8—H8119.6C25—C26—H26119.5
C9—C8—H8119.6C21—C26—H26119.5
C10—C9—C8120.9 (4)C28—C27—C32116.5 (4)
C10—C9—H9119.6C28—C27—Si2122.5 (3)
C8—C9—H9119.6C32—C27—Si2121.0 (3)
C9—C10—C11119.5 (4)C29—C28—C27121.5 (4)
C9—C10—H10120.2C29—C28—H28119.2
C11—C10—H10120.2C27—C28—H28119.2
C10—C11—C12120.2 (4)C30—C29—C28120.1 (4)
C10—C11—H11119.9C30—C29—H29119.9
C12—C11—H11119.9C28—C29—H29119.9
C11—C12—C7121.6 (4)C31—C30—C29120.0 (4)
C11—C12—H12119.2C31—C30—H30120.0
C7—C12—H12119.2C29—C30—H30120.0
C18—C13—C14116.3 (3)C30—C31—C32119.9 (4)
C18—C13—Si1121.0 (3)C30—C31—H31120.0
C14—C13—Si1122.6 (3)C32—C31—H31120.0
C15—C14—C13121.7 (3)C31—C32—C27121.9 (4)
C15—C14—H14119.1C31—C32—H32119.1
C13—C14—H14119.1C27—C32—H32119.1
C19—Si1—C1—C248.3 (3)C13—C14—C15—C160.3 (5)
C13—Si1—C1—C2169.5 (3)C14—C15—C16—C170.0 (6)
C7—Si1—C1—C270.3 (3)C15—C16—C17—C180.3 (6)
C19—Si1—C1—C6131.4 (3)C16—C17—C18—C130.9 (6)
C13—Si1—C1—C610.3 (3)C14—C13—C18—C171.2 (5)
C7—Si1—C1—C6110.0 (3)Si1—C13—C18—C17174.3 (3)
C6—C1—C2—C31.9 (6)C1—Si1—C19—C20141.2 (4)
Si1—C1—C2—C3178.4 (3)C13—Si1—C19—C2021.5 (5)
C1—C2—C3—C40.9 (7)C7—Si1—C19—C2099.6 (4)
C2—C3—C4—C50.7 (7)Si1—C19—C20—Si2179.1 (2)
C3—C4—C5—C61.2 (6)C21—Si2—C20—C19134.7 (4)
C4—C5—C6—C10.1 (6)C27—Si2—C20—C19102.9 (4)
C2—C1—C6—C51.4 (5)C20—Si2—C21—C26128.0 (3)
Si1—C1—C6—C5178.9 (3)C27—Si2—C21—C26110.6 (3)
C19—Si1—C7—C8124.5 (3)C20—Si2—C21—C2252.5 (4)
C1—Si1—C7—C85.7 (3)C27—Si2—C21—C2268.9 (3)
C13—Si1—C7—C8113.8 (3)C26—C21—C22—C230.4 (6)
C19—Si1—C7—C1255.4 (3)Si2—C21—C22—C23179.1 (3)
C1—Si1—C7—C12174.1 (3)C21—C22—C23—C240.4 (8)
C13—Si1—C7—C1266.4 (3)C22—C23—C24—C251.0 (10)
C12—C7—C8—C92.2 (5)C23—C24—C25—C261.6 (10)
Si1—C7—C8—C9177.9 (3)C24—C25—C26—C211.8 (9)
C7—C8—C9—C101.1 (7)C22—C21—C26—C251.1 (6)
C8—C9—C10—C110.0 (7)Si2—C21—C26—C25178.4 (4)
C9—C10—C11—C120.1 (7)C21—Si2—C27—C289.0 (4)
C10—C11—C12—C71.4 (6)C20—Si2—C27—C28131.7 (3)
C8—C7—C12—C112.4 (5)C21—Si2—C27—C32171.0 (3)
Si1—C7—C12—C11177.7 (3)C20—Si2—C27—C3248.3 (4)
C19—Si1—C13—C1851.7 (3)C32—C27—C28—C290.3 (6)
C1—Si1—C13—C1868.1 (3)Si2—C27—C28—C29179.7 (3)
C7—Si1—C13—C18172.0 (3)C27—C28—C29—C300.1 (7)
C19—Si1—C13—C14133.1 (3)C28—C29—C30—C310.2 (7)
C1—Si1—C13—C14107.1 (3)C29—C30—C31—C320.2 (7)
C7—Si1—C13—C1412.8 (3)C30—C31—C32—C270.6 (7)
C18—C13—C14—C150.8 (5)C28—C27—C32—C310.6 (6)
Si1—C13—C14—C15174.6 (3)Si2—C27—C32—C31179.3 (3)

Experimental details

Crystal data
Chemical formulaC32H28Si2
Mr468.72
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)11.1046 (12), 11.4205 (11), 12.7004 (9)
α, β, γ (°)72.632 (7), 78.905 (7), 62.198 (11)
V3)1357.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.15
Crystal size (mm)0.40 × 0.26 × 0.13
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.944, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
4973, 4739, 2575
Rint0.024
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.146, 1.02
No. of reflections4739
No. of parameters321
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Si1—C191.852 (4)Si2—C201.865 (4)
Si1—C11.864 (3)Si2—C271.869 (4)
Si1—C131.868 (3)Si2—H11.35 (3)
Si1—C71.875 (3)C19—C201.292 (5)
Si2—C211.855 (4)
C19—Si1—C1108.84 (18)C21—Si2—C20111.20 (19)
C19—Si1—C13111.04 (18)C21—Si2—C27110.76 (17)
C1—Si1—C13108.81 (15)C20—Si2—C27109.02 (18)
C19—Si1—C7108.66 (16)C21—Si2—H1108.6 (11)
C1—Si1—C7109.48 (15)C20—Si2—H1108.4 (11)
C13—Si1—C7109.98 (15)C27—Si2—H1108.8 (11)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds