Download citation
Download citation
link to html
The structure of chloro­bis{[1-(p-chloro­phenyl­methyl)-2-(1-pyrrolidin-1-yl­methyl)-2,3-di­hydro-1H-benz­imidazole-N2,N3]}copper(II) chloride ethanol solvate, [CuCl(C19H20ClN3)2]Cl·C2H6O, contains two mol­ecules of clemizole bound in a bidentate manner to copper, with significantly different Cu-N distances; the pyrrolidinyl N-Cu and imidazole N-Cu distances are 1.959 (4) and 2.366 (5) Å for ligand 1, and 1.976 (4) and 2.193 (4) Å for ligand 2, respectively. The geometry around copper is distorted trigonal bipyramidal, with a Cu-Cl distance of 2.2699 (15) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801001039/cv6000sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801001039/cv6000Isup2.hkl
Contains datablock I

CCDC reference: 159707

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.010 Å
  • Disorder in solvent or counterion
  • R factor = 0.051
  • wR factor = 0.142
  • Data-to-parameter ratio = 8.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_302 Alert C Anion/Solvent disorder ....................... 43.00 Perc. PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 1 N1A -CU1 -N1 -C7 -70.40 1.60 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 5 N1A -CU1 -N1 -C1 115.30 1.40 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 76 N1 -CU1 -N1A -C7A -1.20 1.70 1.555 1.555 1.555 1.555 PLAT_710 Alert C Delete 1-2-3 or 2-3-4 (CIF) Linear Torsion Angle # 80 N1 -CU1 -N1A -C1A 173.10 1.30 1.555 1.555 1.555 1.555 General Notes
FORMU_01 There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C40 H46 Cl4 Cu1 N6 O1 Atom count from _chemical_formula_moiety:C40 H46 Cl3 Cu2 N6 O1 ABSTM_02 When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.758 Tmax scaled 0.266 Tmin scaled 0.227 REFLT_03 From the CIF: _diffrn_reflns_theta_max 68.00 From the CIF: _reflns_number_total 4073 Count of symmetry unique reflns 3905 Completeness (_total/calc) 104.30% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 168 Fraction of Friedel pairs measured 0.043 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
5 Alert Level C = Please check

Comment top

The crystal structures of clemizole hydrochloride (Parvez, 1996), clemizoledichlorozinc(II) (Parvez & Sabir, 1996a) clemizoledichlorocobalt(II), (Parvez & Braitenbach, 2000), clemizole as a free base (Parvez & Sabir, 1996b), clemizole tetrachlorocuprate(II) and clemizole tetrachlorocobaltate(II) (Parvez & Sabir, 1997) have been reported from our laboratory. This H1 antihistamine has now been incorporated into a copper complex to investigate further the effects such complex formation may have on the conformation of the clemizole moiety. In this paper, we report the structure of bis(clemizole)chlorocopper(II) chloride ethanol solvate, (I).

Fig. 1 shows an ORTEPII (Johnson, 1976) drawing of the cation bis(clemizole)chlorocopper(II) wherein two molecules of clemizole are coordinated in a bidentate mode to copper via pyrrolidinyl and imidazole N atoms with significantly different Cu—N distances of 1.959 (4) and 2.366 (5) Å for ligand 1, and 1.976 (4) and 2.193 (4) Å for ligand 2, respectively; the imidizole nitrogen atom, N3, of ligand 1 has an unusually long bond to copper. The Cu atom is also bound to Cl2, with a distance of 2.2699 (15) Å. The geometry around copper is distorted trigonal bipyramidal with an almost linear N1—Cu1—N1A angle, 172.84 (18)°. Similar distances and geometry have been reported for a number of closely related copper complexes, e.g. chloro(2,5,8,11-tetraethyl-1,2,7,10-tetraazacyclododecane)copper(II) chloride hydrate (Sakurai et al., 1982), chloro(1,4,7,10-tetrabenzyl-2,5,8,11-tetraethyl-1,4,7,10-tetraazacyclo- dodecane)copper(II) chloride (Sakurai et al., 1982), chloro(trans-5,7,12,14-tetramethyl-1,4,8,11-tetra-azacyclotetradecane-6,13- dione dioxime)copper(II) chloride heptahydrate (Bernhardt & Sharpe, 1998), (4,11-dibenzyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane)chlorocopper(II) chloride monohydrate (Weisman et al., 1996), and (1,4,8,11-tetra-azabicyclo[6.6.2]hexadecane)chlorocopper(II) chloride trihydrate (Weisman et al., 1996).

The molecular dimensions of the ligands are normal. The important mean bond distances are: Csp2—Cl 1.738 (9), Csp3—Csp3 1.519 (16), Csp3—Csp2 1.506 (5), N—Csp3 1.476 (11), N—Csp2 1.379 (10) and C—Caromatic 1.382 (18) Å. It is interesting to note that the N1—C7 and N1A—C7A bonds [1.336 (7) and 1.312 (6) Å, respectively] are much shorter than expected for a single bond and that the N2—C7 and N2A—C7A bonds [1.343 (7) and 1.348 (6) Å, respectively] are much longer than expected for a double bond; these bonds must represent a delocalized system with mean NC distance of 1.334 (13) Å; the corresponding distances in the structure of clemizoledichlorozinc(II) (Parvez & Sabir, 1996a) were observed to be 1.357 (5) and 1.321 (5) Å, respectively.

The benzimidazole and phenyl rings are essentially planar with maximum deviations of atoms from the least-squares planes being 0.037 (5) and 0.021 (6) Å for ligand 1 and 0.020 (4) and 0.018 (6) Å for ligand 2, respectively. The dihedral angle between the least-squares planes of the benzimidazole and phenyl rings is 81.38 (18)° for ligand 1 and 85.65 (18)° for ligand 2. The corresponding angle in the structures of clemizole dichlorozinc, clemizole hydrochloride, clemizole dichlorocobalt, clemizole as a free base, clemizole tetrachlorocuprate(II) and clemizole tetrachlorocobaltate(II) are 81.1 (4) (Parvez & Sabir, 1996a), 82.8 (9) (Parvez, 1996), 86.2 (2) (Parvez & Braitenbach, 2000), 68.8 (6) (Parvez & Sabir, 1996b), 70.5 (6) and 82.7 (9)° (Parvez & Sabir, 1997), respectively.

An examination of the torsion angle N2—C13—C14—C19 in ligand 1 [-123.4 (7)°] and N2A—C13A—C14A—C19A in ligand 2 [146.7 (6)°] shows that the orientation of the phenyl ring with respect to the imidazole ring in ligand 1 in (I) is somewhat similar to the orientation of these rings in clemizole tetrachlorocobaltate (-116°; Parvez & Sabir, 1997) and the orientation of these rings in ligand 2 in (I) is somewhat similar to the orientation of these rings in clemizole tetrachlorocuprate (133°; Parvez & Sabir, 1997) and clemizole hydrochloride (153°; Parvez, 1996). The pyrrolidinyl rings in each ligand have an N-envelope conformation with N3 0.627 (9) Å out of the plane of the C9—C12 atoms and N3A 0.582 (9) Å out of the plane of the C9A–C12A atoms; similar conformations of the 5-membered ring have been observed in the crystal structures mentioned above.

The structure is composed of independent cations of the complex separated by normal van der Waals distances. The hydrogen bonding interactions exist between Cl- ions and the ethanol molecules of solvation, both the distances O1H1···Cl3 and O1H1A···Cl3 are 2.73 Å. The benzimidazole moieties of the complex molecules which lie about the inversion centers are stacked parallel to each other.

Experimental top

The title compound was synthesized by adding 1.0 mmol of CuCl2·2H20 to 2.0 mmol of clemizole hydrochloride (Sigma Inc.) in 20 ml of ethanol. NH4OH was added until the pH was 8–9. The solution was evaporated slowly at room temperature and blue prismatic crystals separated after a few days.

Refinement top

Based on the systematic absences: h0l, h+l = 2n+1, packing considerations, a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be: Pn. The asymmetric unit contains a bis(clemizole)chlorocopper(II) cation, a Cl- anion and two half molecules of ethanol of solvation. The C and O atoms of the solvent molecules were refined with isotropic displacement parameters while the rest of the non-H atoms were allowed anisotropic vibrations. The partial occupancy factors for the solvents were determined during the initial rounds of calculations and were fixed at 0.50 at the final stages of the refinements. A small degree of disorder was also evident in the solvent molecules, therefore, C—O and C—C distances were constrained. The H atoms were included in the refinements in a riding mode with O—H = 0.82 Å and C—H = 0.93–0.97 Å. The non-methyl and methyl H atoms were allowed isotropic displacement parameters 1.2 and 1.5 times the displacement parameters of the atoms to which they were attached.

Computing details top

Data collection: Enraf-Nonius CAD-4 Software. Version 5.0. (Enraf-Nonius, 1989); cell refinement: Enraf-Nonius CAD-4 Software. Version 5.0. (Enraf-Nonius, 1989); data reduction: TEXSAN (Molecular Structure Corporation, 1994); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN (Molecular Structure Corporation, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of bis(clemizole)chlorocopper(II) with displacement ellipsoids plotted at 30% probability level.
Dichloro[1-(p-chlorophenylmethyl)-2-(1-pyrrolidinylmethyl)benzimidazole- N,N'']copper(II) Ethanol Solvate top
Crystal data top
[CuCl(C19H20ClN3)2]Cl·C2H6OF(000) = 866
Mr = 832.17Dx = 1.293 Mg m3
Monoclinic, PnCu Kα radiation, λ = 1.54178 Å
a = 12.809 (3) ÅCell parameters from 25 reflections
b = 8.608 (2) Åθ = 15.0–40.0°
c = 19.482 (4) ŵ = 3.31 mm1
β = 95.81 (2)°T = 293 K
V = 2137.0 (8) Å3Prismatic, blue
Z = 20.48 × 0.45 × 0.40 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
3871 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.066
Graphite monochromatorθmax = 68.0°, θmin = 5.0°
ω/2θ scansh = 015
Absorption correction: empirical (using intensity measurements)
ψ scan (3 reflections) (North et al., 1968)
k = 1010
Tmin = 0.299, Tmax = 0.351l = 2323
7860 measured reflections3 standard reflections every 200 reflections
4073 independent reflections intensity decay: 32%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.1112P)2 + 0.3126P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.142(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.63 e Å3
4073 reflectionsΔρmin = 0.38 e Å3
469 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
8 restraintsExtinction coefficient: 0.0054 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.08 (2)
Crystal data top
[CuCl(C19H20ClN3)2]Cl·C2H6OV = 2137.0 (8) Å3
Mr = 832.17Z = 2
Monoclinic, PnCu Kα radiation
a = 12.809 (3) ŵ = 3.31 mm1
b = 8.608 (2) ÅT = 293 K
c = 19.482 (4) Å0.48 × 0.45 × 0.40 mm
β = 95.81 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
3871 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
ψ scan (3 reflections) (North et al., 1968)
Rint = 0.066
Tmin = 0.299, Tmax = 0.3513 standard reflections every 200 reflections
7860 measured reflections intensity decay: 32%
4073 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.142Δρmax = 0.63 e Å3
S = 1.03Δρmin = 0.38 e Å3
4073 reflectionsAbsolute structure: Flack (1983)
469 parametersAbsolute structure parameter: 0.08 (2)
8 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.46235 (4)0.62124 (6)0.22865 (3)0.0463 (2)
Cl20.37580 (17)0.40168 (18)0.19192 (8)0.0858 (5)
Cl30.26678 (18)0.9707 (2)0.78698 (12)0.0940 (5)
Cl10.75002 (17)0.1810 (3)0.5609 (2)0.1301 (11)
N10.4666 (3)0.5515 (5)0.3246 (2)0.0507 (9)
N20.5503 (4)0.4897 (6)0.4261 (2)0.0592 (10)
N30.6422 (3)0.5656 (5)0.2580 (2)0.0536 (9)
C10.3944 (4)0.4911 (6)0.3659 (2)0.0517 (10)
C20.2864 (5)0.4670 (7)0.3516 (3)0.0634 (13)
H20.25050.49570.30960.076*
C30.2360 (6)0.3986 (10)0.4030 (4)0.085 (2)
H30.16490.37590.39490.102*
C40.2905 (7)0.3622 (11)0.4678 (4)0.092 (2)
H40.25310.32030.50190.111*
C50.3943 (7)0.3859 (10)0.4819 (4)0.085 (2)
H50.42960.35750.52410.102*
C60.4469 (5)0.4553 (7)0.4303 (3)0.0610 (12)
C70.5592 (4)0.5465 (6)0.3628 (3)0.0525 (10)
C80.6577 (4)0.5948 (7)0.3321 (3)0.0604 (12)
H8A0.67140.70430.34070.073*
H8B0.71720.53570.35280.073*
C90.6572 (6)0.3994 (7)0.2420 (4)0.0710 (15)
H9A0.59580.33870.25010.085*
H9B0.71800.35710.26940.085*
C100.6733 (8)0.4020 (11)0.1672 (5)0.095 (2)
H10A0.60700.38640.13920.113*
H10B0.72120.32020.15670.113*
C110.7182 (7)0.5584 (13)0.1525 (4)0.095 (2)
H11A0.67310.61340.11760.114*
H11B0.78750.54830.13710.114*
C120.7233 (6)0.6425 (8)0.2221 (4)0.0732 (15)
H12A0.79190.63080.24760.088*
H12B0.70810.75230.21580.088*
C130.6342 (6)0.4744 (8)0.4825 (3)0.0684 (14)
H13A0.61320.52600.52310.082*
H13B0.69670.52590.46960.082*
C140.6599 (5)0.3067 (7)0.4997 (3)0.0652 (13)
C150.6902 (5)0.2068 (7)0.4515 (3)0.0639 (13)
H150.69130.23980.40610.077*
C160.7198 (5)0.0552 (9)0.4696 (4)0.0779 (17)
H160.74320.01240.43720.093*
C170.7135 (5)0.0081 (8)0.5363 (5)0.081 (2)
C180.6787 (7)0.1037 (10)0.5853 (4)0.090 (2)
H180.67180.06760.62960.107*
C190.6540 (7)0.2557 (10)0.5670 (3)0.088 (2)
H190.63320.32420.59990.106*
Cl1A0.97099 (13)1.1523 (3)0.01150 (11)0.0980 (6)
N1A0.4622 (3)0.7177 (4)0.13661 (19)0.0475 (8)
N2A0.4863 (3)0.9222 (5)0.0723 (2)0.0489 (8)
N3A0.4530 (4)0.8668 (5)0.2573 (2)0.0517 (9)
C1A0.4551 (4)0.6703 (6)0.0682 (2)0.0484 (9)
C2A0.4358 (4)0.5239 (6)0.0368 (3)0.0572 (11)
H2A0.42520.43580.06280.069*
C3A0.4333 (5)0.5170 (8)0.0337 (3)0.0673 (14)
H3A0.42060.42170.05550.081*
C4A0.4491 (5)0.6473 (9)0.0739 (3)0.0710 (15)
H4A0.44570.63690.12160.085*
C5A0.4697 (4)0.7914 (7)0.0446 (3)0.0610 (12)
H5A0.48110.87840.07120.073*
C6A0.4725 (4)0.7995 (6)0.0275 (3)0.0501 (10)
C7A0.4802 (4)0.8678 (5)0.1364 (3)0.0458 (9)
C8A0.4924 (4)0.9613 (5)0.2016 (3)0.0531 (10)
H8A10.56560.98740.21350.064*
H8A20.45261.05700.19540.064*
C9A0.4964 (6)0.9266 (7)0.3261 (3)0.0680 (15)
H9A10.57040.95110.32640.082*
H9A20.48790.85070.36190.082*
C10A0.4325 (8)1.0738 (8)0.3372 (4)0.087 (2)
H10C0.42601.09040.38580.105*
H10D0.46491.16450.31870.105*
C11A0.3258 (8)1.0413 (9)0.2978 (5)0.097 (3)
H11C0.30571.12520.26590.117*
H11D0.27241.03040.32950.117*
C12A0.3386 (5)0.8900 (7)0.2589 (4)0.0693 (15)
H12C0.30840.80410.28230.083*
H12D0.30400.89710.21240.083*
C13A0.5167 (4)1.0812 (5)0.0530 (3)0.0549 (11)
H13C0.50231.15300.08920.066*
H13D0.47461.11210.01100.066*
C14A0.6311 (4)1.0910 (5)0.0418 (3)0.0487 (9)
C15A0.7071 (5)1.0121 (8)0.0812 (4)0.0749 (17)
H15A0.68750.94340.11440.090*
C16A0.8129 (5)1.0303 (9)0.0735 (4)0.0799 (18)
H16A0.86390.97810.10200.096*
C17A0.8398 (4)1.1281 (7)0.0225 (3)0.0615 (12)
C18A0.7660 (6)1.2072 (10)0.0177 (4)0.087 (2)
H18A0.78541.27190.05250.104*
C19A0.6617 (5)1.1915 (9)0.0070 (3)0.0742 (17)
H19A0.61131.24990.03330.089*
O10.4386 (8)0.1708 (12)0.8635 (5)0.075 (2)*0.50
H10.37840.20310.85550.113*0.50
C200.507 (2)0.257 (3)0.8226 (11)0.162 (11)*0.50
H20A0.57650.26320.84750.195*0.50
H20B0.48060.36180.81570.195*0.50
C210.515 (2)0.183 (4)0.7544 (10)0.143 (8)*0.50
H21A0.56810.23420.73140.214*0.50
H21B0.44870.19080.72680.214*0.50
H21C0.53320.07510.76090.214*0.50
O1A0.0786 (15)0.298 (2)0.2525 (10)0.140 (5)*0.50
H1A0.08410.25730.29000.211*0.50
C20A0.010 (2)0.231 (3)0.222 (2)0.191 (15)*0.50
H20C0.01510.16090.18500.229*0.50
H20D0.05310.17210.25680.229*0.50
C21A0.072 (2)0.362 (4)0.1950 (19)0.169 (12)*0.50
H21D0.13040.32050.17370.254*0.50
H21E0.09780.42910.23250.254*0.50
H21F0.02810.42090.16170.254*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0565 (4)0.0345 (3)0.0483 (3)0.0038 (3)0.0065 (2)0.0046 (3)
Cl20.1281 (15)0.0611 (8)0.0686 (8)0.0445 (9)0.0122 (8)0.0036 (6)
Cl30.1004 (12)0.0766 (10)0.1032 (12)0.0109 (9)0.0022 (10)0.0028 (9)
Cl10.0727 (10)0.0767 (11)0.237 (3)0.0019 (9)0.0047 (14)0.0627 (17)
N10.052 (2)0.044 (2)0.057 (2)0.0018 (16)0.0085 (17)0.0061 (17)
N20.070 (3)0.057 (2)0.051 (2)0.011 (2)0.0047 (19)0.0032 (18)
N30.056 (2)0.0408 (18)0.066 (2)0.0024 (17)0.0152 (18)0.0007 (17)
C10.062 (3)0.044 (2)0.051 (2)0.004 (2)0.014 (2)0.0024 (19)
C20.059 (3)0.059 (3)0.075 (3)0.006 (2)0.020 (2)0.003 (2)
C30.069 (4)0.096 (5)0.096 (5)0.018 (3)0.035 (3)0.006 (4)
C40.100 (5)0.109 (6)0.074 (4)0.014 (4)0.040 (4)0.011 (4)
C50.105 (5)0.099 (5)0.054 (3)0.004 (4)0.028 (3)0.014 (3)
C60.079 (4)0.049 (3)0.057 (3)0.006 (2)0.018 (2)0.003 (2)
C70.060 (3)0.045 (2)0.053 (2)0.007 (2)0.009 (2)0.0039 (19)
C80.057 (3)0.056 (3)0.067 (3)0.002 (2)0.001 (2)0.005 (2)
C90.078 (4)0.052 (3)0.085 (4)0.013 (3)0.017 (3)0.003 (3)
C100.105 (6)0.088 (5)0.090 (5)0.014 (4)0.008 (4)0.032 (4)
C110.089 (5)0.122 (7)0.078 (4)0.022 (5)0.033 (4)0.013 (4)
C120.066 (3)0.071 (4)0.086 (4)0.001 (3)0.024 (3)0.005 (3)
C130.086 (4)0.067 (3)0.050 (2)0.004 (3)0.005 (2)0.002 (2)
C140.076 (3)0.059 (3)0.056 (3)0.004 (3)0.012 (2)0.005 (2)
C150.065 (3)0.061 (3)0.065 (3)0.006 (3)0.000 (2)0.006 (2)
C160.057 (3)0.067 (3)0.109 (5)0.001 (3)0.005 (3)0.002 (3)
C170.052 (3)0.066 (4)0.120 (6)0.002 (3)0.017 (3)0.022 (4)
C180.103 (5)0.089 (5)0.072 (4)0.001 (4)0.017 (4)0.029 (4)
C190.122 (6)0.090 (5)0.050 (3)0.004 (4)0.007 (3)0.006 (3)
Cl1A0.0539 (8)0.1400 (18)0.1020 (12)0.0080 (9)0.0175 (8)0.0177 (12)
N1A0.059 (2)0.0355 (17)0.0478 (19)0.0018 (15)0.0028 (16)0.0048 (15)
N2A0.053 (2)0.0383 (18)0.057 (2)0.0015 (15)0.0131 (16)0.0105 (16)
N3A0.062 (2)0.0394 (18)0.054 (2)0.0013 (16)0.0094 (17)0.0013 (15)
C1A0.050 (2)0.043 (2)0.053 (2)0.0001 (18)0.0053 (18)0.0019 (19)
C2A0.067 (3)0.042 (2)0.062 (3)0.002 (2)0.003 (2)0.006 (2)
C3A0.067 (3)0.066 (3)0.068 (3)0.004 (3)0.004 (2)0.024 (3)
C4A0.070 (3)0.091 (4)0.053 (3)0.006 (3)0.009 (2)0.007 (3)
C5A0.064 (3)0.069 (3)0.052 (2)0.008 (2)0.014 (2)0.006 (2)
C6A0.046 (2)0.051 (2)0.053 (2)0.0026 (19)0.0027 (18)0.007 (2)
C7A0.048 (2)0.033 (2)0.056 (2)0.0001 (16)0.0059 (18)0.0045 (17)
C8A0.068 (3)0.0336 (19)0.058 (2)0.0017 (19)0.010 (2)0.0045 (18)
C9A0.102 (5)0.049 (3)0.052 (3)0.011 (3)0.006 (3)0.009 (2)
C10A0.131 (7)0.052 (3)0.082 (4)0.011 (4)0.030 (4)0.012 (3)
C11A0.114 (6)0.059 (3)0.127 (6)0.027 (4)0.050 (5)0.008 (4)
C12A0.060 (3)0.057 (3)0.092 (4)0.004 (2)0.018 (3)0.005 (3)
C13A0.058 (3)0.034 (2)0.074 (3)0.0003 (18)0.011 (2)0.018 (2)
C14A0.056 (2)0.0339 (19)0.057 (2)0.0011 (17)0.0097 (19)0.0069 (17)
C15A0.062 (3)0.075 (4)0.091 (4)0.011 (3)0.021 (3)0.043 (3)
C16A0.061 (3)0.084 (4)0.095 (4)0.009 (3)0.008 (3)0.030 (4)
C17A0.052 (3)0.068 (3)0.064 (3)0.005 (2)0.008 (2)0.003 (2)
C18A0.066 (3)0.107 (5)0.088 (4)0.010 (3)0.011 (3)0.048 (4)
C19A0.067 (3)0.081 (4)0.075 (3)0.002 (3)0.005 (3)0.037 (3)
Geometric parameters (Å, º) top
Cu1—N11.959 (4)N3A—C12A1.482 (8)
Cu1—N1A1.976 (4)N3A—C8A1.485 (7)
Cu1—N3A2.193 (4)N3A—C9A1.490 (7)
Cu1—Cl22.2699 (15)C1A—C6A1.396 (7)
Cu1—N32.366 (5)C1A—C2A1.411 (7)
Cl1—C171.747 (7)C2A—C3A1.372 (9)
N1—C71.336 (7)C2A—H2A0.9300
N1—C11.387 (7)C3A—C4A1.395 (11)
N2—C71.343 (7)C3A—H3A0.9300
N2—C61.368 (8)C4A—C5A1.380 (10)
N2—C131.462 (7)C4A—H4A0.9300
N3—C81.459 (7)C5A—C6A1.404 (7)
N3—C121.467 (8)C5A—H5A0.9300
N3—C91.481 (7)C7A—C8A1.499 (7)
C1—C61.396 (8)C8A—H8A10.9700
C1—C21.399 (8)C8A—H8A20.9700
C2—C31.376 (9)C9A—C10A1.536 (9)
C2—H20.9300C9A—H9A10.9700
C3—C41.415 (13)C9A—H9A20.9700
C3—H30.9300C10A—C11A1.524 (14)
C4—C51.347 (14)C10A—H10C0.9700
C4—H40.9300C10A—H10D0.9700
C5—C61.400 (9)C11A—C12A1.525 (10)
C5—H50.9300C11A—H11C0.9700
C7—C81.508 (8)C11A—H11D0.9700
C8—H8A0.9700C12A—H12C0.9700
C8—H8B0.9700C12A—H12D0.9700
C9—C101.492 (11)C13A—C14A1.504 (7)
C9—H9A0.9700C13A—H13C0.9700
C9—H9B0.9700C13A—H13D0.9700
C10—C111.503 (14)C14A—C15A1.358 (8)
C10—H10A0.9700C14A—C19A1.372 (7)
C10—H10B0.9700C15A—C16A1.388 (9)
C11—C121.533 (12)C15A—H15A0.9300
C11—H11A0.9700C16A—C17A1.372 (9)
C11—H11B0.9700C16A—H16A0.9300
C12—H12A0.9700C17A—C18A1.348 (9)
C12—H12B0.9700C18A—C19A1.381 (10)
C13—C141.511 (9)C18A—H18A0.9300
C13—H13A0.9700C19A—H19A0.9300
C13—H13B0.9700O1—C201.447 (10)
C14—C151.359 (9)O1—H10.8200
C14—C191.392 (9)C20—C211.487 (10)
C15—C161.394 (10)C20—H20A0.9700
C15—H150.9300C20—H20B0.9700
C16—C171.372 (12)C21—H21A0.9600
C16—H160.9300C21—H21B0.9600
C17—C181.368 (13)C21—H21C0.9600
C18—C191.384 (12)O1A—C20A1.446 (10)
C18—H180.9300O1A—H1A0.8200
C19—H190.9300C20A—C21A1.515 (10)
Cl1A—C17A1.729 (6)C20A—H20C0.9700
N1A—C7A1.312 (6)C20A—H20D0.9700
N1A—C1A1.389 (6)C21A—H21D0.9600
N2A—C7A1.343 (6)C21A—H21E0.9600
N2A—C6A1.370 (7)C21A—H21F0.9600
N2A—C13A1.482 (6)
N1—Cu1—N1A172.84 (18)C8A—N3A—C9A110.2 (4)
N1—Cu1—N3A92.82 (17)C12A—N3A—Cu1102.4 (3)
N1A—Cu1—N3A80.27 (17)C8A—N3A—Cu1108.1 (3)
N1—Cu1—Cl290.64 (13)C9A—N3A—Cu1122.5 (3)
N1A—Cu1—Cl296.22 (12)N1A—C1A—C6A108.2 (4)
N3A—Cu1—Cl2147.71 (14)N1A—C1A—C2A132.1 (4)
N1—Cu1—N377.00 (16)C6A—C1A—C2A119.7 (5)
N1A—Cu1—N3102.47 (16)C3A—C2A—C1A117.3 (5)
N3A—Cu1—N3102.16 (16)C3A—C2A—H2A121.4
Cl2—Cu1—N3109.89 (12)C1A—C2A—H2A121.4
C7—N1—C1105.8 (4)C2A—C3A—C4A122.5 (5)
C7—N1—Cu1118.6 (3)C2A—C3A—H3A118.8
C1—N1—Cu1135.5 (4)C4A—C3A—H3A118.8
C7—N2—C6107.8 (5)C5A—C4A—C3A121.6 (5)
C7—N2—C13126.7 (5)C5A—C4A—H4A119.2
C6—N2—C13125.4 (5)C3A—C4A—H4A119.2
C8—N3—C12111.2 (5)C4A—C5A—C6A116.3 (5)
C8—N3—C9111.6 (5)C4A—C5A—H5A121.9
C12—N3—C9102.9 (5)C6A—C5A—H5A121.9
C8—N3—Cu1103.6 (3)N2A—C6A—C1A105.7 (4)
C12—N3—Cu1120.8 (4)N2A—C6A—C5A131.6 (5)
C9—N3—Cu1106.8 (4)C1A—C6A—C5A122.6 (5)
N1—C1—C6108.3 (5)N1A—C7A—N2A111.9 (4)
N1—C1—C2130.1 (5)N1A—C7A—C8A121.9 (4)
C6—C1—C2121.6 (5)N2A—C7A—C8A126.1 (4)
C3—C2—C1116.4 (6)N3A—C8A—C7A108.2 (4)
C3—C2—H2121.8N3A—C8A—H8A1110.1
C1—C2—H2121.8C7A—C8A—H8A1110.1
C2—C3—C4121.3 (7)N3A—C8A—H8A2110.1
C2—C3—H3119.4C7A—C8A—H8A2110.1
C4—C3—H3119.4H8A1—C8A—H8A2108.4
C5—C4—C3122.4 (6)N3A—C9A—C10A104.8 (6)
C5—C4—H4118.8N3A—C9A—H9A1110.8
C3—C4—H4118.8C10A—C9A—H9A1110.8
C4—C5—C6117.1 (7)N3A—C9A—H9A2110.8
C4—C5—H5121.5C10A—C9A—H9A2110.8
C6—C5—H5121.5H9A1—C9A—H9A2108.9
N2—C6—C1106.3 (5)C11A—C10A—C9A104.0 (6)
N2—C6—C5132.4 (6)C11A—C10A—H10C111.0
C1—C6—C5121.1 (6)C9A—C10A—H10C111.0
N1—C7—N2111.7 (5)C11A—C10A—H10D111.0
N1—C7—C8120.1 (4)C9A—C10A—H10D111.0
N2—C7—C8128.1 (5)H10C—C10A—H10D109.0
N3—C8—C7108.0 (4)C10A—C11A—C12A105.7 (6)
N3—C8—H8A110.1C10A—C11A—H11C110.6
C7—C8—H8A110.1C12A—C11A—H11C110.6
N3—C8—H8B110.1C10A—C11A—H11D110.6
C7—C8—H8B110.1C12A—C11A—H11D110.6
H8A—C8—H8B108.4H11C—C11A—H11D108.7
N3—C9—C10103.0 (6)N3A—C12A—C11A106.4 (6)
N3—C9—H9A111.2N3A—C12A—H12C110.4
C10—C9—H9A111.2C11A—C12A—H12C110.4
N3—C9—H9B111.2N3A—C12A—H12D110.4
C10—C9—H9B111.2C11A—C12A—H12D110.4
H9A—C9—H9B109.1H12C—C12A—H12D108.6
C9—C10—C11107.0 (6)N2A—C13A—C14A111.9 (4)
C9—C10—H10A110.3N2A—C13A—H13C109.2
C11—C10—H10A110.3C14A—C13A—H13C109.2
C9—C10—H10B110.3N2A—C13A—H13D109.2
C11—C10—H10B110.3C14A—C13A—H13D109.2
H10A—C10—H10B108.6H13C—C13A—H13D107.9
C10—C11—C12103.7 (6)C15A—C14A—C19A117.9 (5)
C10—C11—H11A111.0C15A—C14A—C13A122.9 (5)
C12—C11—H11A111.0C19A—C14A—C13A119.1 (5)
C10—C11—H11B111.0C14A—C15A—C16A122.3 (5)
C12—C11—H11B111.0C14A—C15A—H15A118.8
H11A—C11—H11B109.0C16A—C15A—H15A118.8
N3—C12—C11103.9 (6)C17A—C16A—C15A117.8 (6)
N3—C12—H12A111.0C17A—C16A—H16A121.1
C11—C12—H12A111.0C15A—C16A—H16A121.1
N3—C12—H12B111.0C18A—C17A—C16A121.2 (6)
C11—C12—H12B111.0C18A—C17A—Cl1A120.0 (5)
H12A—C12—H12B109.0C16A—C17A—Cl1A118.8 (5)
N2—C13—C14112.3 (5)C17A—C18A—C19A119.6 (6)
N2—C13—H13A109.1C17A—C18A—H18A120.2
C14—C13—H13A109.1C19A—C18A—H18A120.2
N2—C13—H13B109.1C14A—C19A—C18A121.0 (6)
C14—C13—H13B109.1C14A—C19A—H19A119.5
H13A—C13—H13B107.9C18A—C19A—H19A119.5
C15—C14—C19119.9 (6)C20—O1—H1109.5
C15—C14—C13121.5 (5)O1—C20—C21111.8 (11)
C19—C14—C13118.7 (6)O1—C20—H20A109.3
C14—C15—C16120.4 (6)C21—C20—H20A109.3
C14—C15—H15119.8O1—C20—H20B109.3
C16—C15—H15119.8C21—C20—H20B109.3
C17—C16—C15118.4 (7)H20A—C20—H20B107.9
C17—C16—H16120.8C20—C21—H21A109.5
C15—C16—H16120.8C20—C21—H21B109.5
C18—C17—C16122.5 (6)H21A—C21—H21B109.5
C18—C17—Cl1117.8 (6)C20—C21—H21C109.5
C16—C17—Cl1119.7 (7)H21A—C21—H21C109.5
C17—C18—C19118.1 (7)H21B—C21—H21C109.5
C17—C18—H18121.0C20A—O1A—H1A109.5
C19—C18—H18121.0O1A—C20A—C21A107.8 (10)
C18—C19—C14120.5 (8)O1A—C20A—H20C110.1
C18—C19—H19119.7C21A—C20A—H20C110.1
C14—C19—H19119.7O1A—C20A—H20D110.1
C7A—N1A—C1A106.3 (4)C21A—C20A—H20D110.1
C7A—N1A—Cu1115.7 (3)H20C—C20A—H20D108.5
C1A—N1A—Cu1137.9 (3)C20A—C21A—H21D109.5
C7A—N2A—C6A107.9 (4)C20A—C21A—H21E109.5
C7A—N2A—C13A126.9 (4)H21D—C21A—H21E109.5
C6A—N2A—C13A124.8 (4)C20A—C21A—H21F109.5
C12A—N3A—C8A110.5 (5)H21D—C21A—H21F109.5
C12A—N3A—C9A102.4 (5)H21E—C21A—H21F109.5
N1A—Cu1—N1—C770.4 (16)N1—Cu1—N1A—C7A1.2 (17)
N3A—Cu1—N1—C785.7 (4)N3A—Cu1—N1A—C7A14.4 (4)
Cl2—Cu1—N1—C7126.4 (4)Cl2—Cu1—N1A—C7A161.9 (3)
N3—Cu1—N1—C716.1 (3)N3—Cu1—N1A—C7A86.1 (4)
N1A—Cu1—N1—C1115.3 (14)N1—Cu1—N1A—C1A173.1 (13)
N3A—Cu1—N1—C1100.0 (5)N3A—Cu1—N1A—C1A171.4 (5)
Cl2—Cu1—N1—C147.9 (5)Cl2—Cu1—N1A—C1A23.8 (5)
N3—Cu1—N1—C1158.2 (5)N3—Cu1—N1A—C1A88.2 (5)
N1—Cu1—N3—C829.3 (3)N1—Cu1—N3A—C12A86.7 (4)
N1A—Cu1—N3—C8143.4 (3)N1A—Cu1—N3A—C12A95.2 (4)
N3A—Cu1—N3—C860.9 (3)Cl2—Cu1—N3A—C12A9.0 (5)
Cl2—Cu1—N3—C8115.2 (3)N3—Cu1—N3A—C12A164.0 (4)
N1—Cu1—N3—C12154.6 (5)N1—Cu1—N3A—C8A156.6 (4)
N1A—Cu1—N3—C1218.1 (5)N1A—Cu1—N3A—C8A21.5 (3)
N3A—Cu1—N3—C1264.5 (4)Cl2—Cu1—N3A—C8A107.7 (4)
Cl2—Cu1—N3—C12119.5 (4)N3—Cu1—N3A—C8A79.3 (4)
N1—Cu1—N3—C988.7 (4)N1—Cu1—N3A—C9A27.0 (5)
N1A—Cu1—N3—C998.7 (4)N1A—Cu1—N3A—C9A151.1 (5)
N3A—Cu1—N3—C9178.8 (4)Cl2—Cu1—N3A—C9A122.7 (4)
Cl2—Cu1—N3—C92.8 (4)N3—Cu1—N3A—C9A50.3 (5)
C7—N1—C1—C61.9 (5)C7A—N1A—C1A—C6A1.4 (5)
Cu1—N1—C1—C6176.7 (4)Cu1—N1A—C1A—C6A173.2 (4)
C7—N1—C1—C2178.9 (5)C7A—N1A—C1A—C2A179.2 (6)
Cu1—N1—C1—C24.0 (9)Cu1—N1A—C1A—C2A6.1 (9)
N1—C1—C2—C3177.5 (6)N1A—C1A—C2A—C3A179.6 (5)
C6—C1—C2—C33.3 (9)C6A—C1A—C2A—C3A1.1 (8)
C1—C2—C3—C43.0 (11)C1A—C2A—C3A—C4A0.1 (9)
C2—C3—C4—C52.9 (14)C2A—C3A—C4A—C5A0.9 (10)
C3—C4—C5—C62.7 (13)C3A—C4A—C5A—C6A0.8 (9)
C7—N2—C6—C11.2 (6)C7A—N2A—C6A—C1A1.5 (5)
C13—N2—C6—C1178.2 (5)C13A—N2A—C6A—C1A174.1 (4)
C7—N2—C6—C5175.8 (7)C7A—N2A—C6A—C5A178.7 (5)
C13—N2—C6—C57.2 (11)C13A—N2A—C6A—C5A8.7 (8)
N1—C1—C6—N21.9 (6)N1A—C1A—C6A—N2A1.8 (5)
C2—C1—C6—N2178.8 (5)C2A—C1A—C6A—N2A178.8 (5)
N1—C1—C6—C5177.3 (6)N1A—C1A—C6A—C5A179.4 (4)
C2—C1—C6—C53.4 (9)C2A—C1A—C6A—C5A1.2 (7)
C4—C5—C6—N2176.9 (7)C4A—C5A—C6A—N2A177.1 (5)
C4—C5—C6—C12.9 (11)C4A—C5A—C6A—C1A0.2 (8)
C1—N1—C7—N21.2 (6)C1A—N1A—C7A—N2A0.5 (6)
Cu1—N1—C7—N2177.1 (3)Cu1—N1A—C7A—N2A175.5 (3)
C1—N1—C7—C8176.3 (5)C1A—N1A—C7A—C8A179.8 (4)
Cu1—N1—C7—C80.4 (6)Cu1—N1A—C7A—C8A4.2 (6)
C6—N2—C7—N10.0 (6)C6A—N2A—C7A—N1A0.6 (6)
C13—N2—C7—N1177.0 (5)C13A—N2A—C7A—N1A173.0 (4)
C6—N2—C7—C8177.2 (5)C6A—N2A—C7A—C8A179.0 (5)
C13—N2—C7—C85.8 (9)C13A—N2A—C7A—C8A6.6 (8)
C12—N3—C8—C7166.6 (5)C12A—N3A—C8A—C7A87.6 (5)
C9—N3—C8—C779.2 (6)C9A—N3A—C8A—C7A160.0 (4)
Cu1—N3—C8—C735.3 (5)Cu1—N3A—C8A—C7A23.8 (5)
N1—C7—C8—N328.2 (7)N1A—C7A—C8A—N3A14.9 (7)
N2—C7—C8—N3148.8 (5)N2A—C7A—C8A—N3A165.5 (5)
C8—N3—C9—C10162.2 (6)C12A—N3A—C9A—C10A41.1 (6)
C12—N3—C9—C1042.9 (7)C8A—N3A—C9A—C10A76.5 (6)
Cu1—N3—C9—C1085.3 (6)Cu1—N3A—C9A—C10A154.8 (5)
N3—C9—C10—C1126.9 (9)N3A—C9A—C10A—C11A30.1 (7)
C9—C10—C11—C121.4 (9)C9A—C10A—C11A—C12A7.5 (8)
C8—N3—C12—C11161.7 (5)C8A—N3A—C12A—C11A81.0 (6)
C9—N3—C12—C1142.2 (7)C9A—N3A—C12A—C11A36.4 (6)
Cu1—N3—C12—C1176.5 (6)Cu1—N3A—C12A—C11A164.1 (5)
C10—C11—C12—N324.9 (8)C10A—C11A—C12A—N3A17.7 (8)
C7—N2—C13—C14112.9 (6)C7A—N2A—C13A—C14A96.1 (6)
C6—N2—C13—C1470.7 (7)C6A—N2A—C13A—C14A75.0 (6)
N2—C13—C14—C1557.8 (8)N2A—C13A—C14A—C15A37.8 (8)
N2—C13—C14—C19123.4 (7)N2A—C13A—C14A—C19A146.7 (6)
C19—C14—C15—C162.8 (10)C19A—C14A—C15A—C16A0.1 (11)
C13—C14—C15—C16176.0 (6)C13A—C14A—C15A—C16A175.4 (7)
C14—C15—C16—C172.5 (9)C14A—C15A—C16A—C17A2.3 (13)
C15—C16—C17—C180.6 (10)C15A—C16A—C17A—C18A1.8 (12)
C15—C16—C17—Cl1179.9 (5)C15A—C16A—C17A—Cl1A179.7 (6)
C16—C17—C18—C193.3 (12)C16A—C17A—C18A—C19A0.8 (13)
Cl1—C17—C18—C19177.3 (6)Cl1A—C17A—C18A—C19A177.7 (7)
C17—C18—C19—C143.0 (13)C15A—C14A—C19A—C18A2.6 (11)
C15—C14—C19—C180.0 (12)C13A—C14A—C19A—C18A178.3 (7)
C13—C14—C19—C18178.8 (7)C17A—C18A—C19A—C14A3.1 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl3i0.822.733.061 (10)106
O1A—H1A···Cl3ii0.822.733.16 (2)114
Symmetry codes: (i) x, y1, z; (ii) x1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[CuCl(C19H20ClN3)2]Cl·C2H6O
Mr832.17
Crystal system, space groupMonoclinic, Pn
Temperature (K)293
a, b, c (Å)12.809 (3), 8.608 (2), 19.482 (4)
β (°) 95.81 (2)
V3)2137.0 (8)
Z2
Radiation typeCu Kα
µ (mm1)3.31
Crystal size (mm)0.48 × 0.45 × 0.40
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
ψ scan (3 reflections) (North et al., 1968)
Tmin, Tmax0.299, 0.351
No. of measured, independent and
observed [I > 2σ(I)] reflections
7860, 4073, 3871
Rint0.066
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.142, 1.03
No. of reflections4073
No. of parameters469
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.38
Absolute structureFlack (1983)
Absolute structure parameter0.08 (2)

Computer programs: Enraf-Nonius CAD-4 Software. Version 5.0. (Enraf-Nonius, 1989), TEXSAN (Molecular Structure Corporation, 1994), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl3i0.822.733.061 (10)106
O1A—H1A···Cl3ii0.822.733.16 (2)114
Symmetry codes: (i) x, y1, z; (ii) x1/2, y+1, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds