metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{4-Bromo-2-[(2-{(ethyl­sulfan­yl)[(2-oxido­benzyl­­idene-κO)amino-κN]methyl­­idene}hydrazinyl­­idene-κN1)meth­yl]phenolato-κO}(ethanol-κO)dioxido­uranium(VI)

aDipartimento di Scienze Chimiche, Università degli Studi di Napoli 'Federico II', Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy, bDepartment of Chemistry, Payame Noor University, 19395–4697, Tehran, Iran, and cDipartimento di Chimica e Biologia, Università di Salerno, Via Ponte don Melillo, 84084 Salerno, Italy
*Correspondence e-mail: roberto.centore@unina.it

(Received 21 May 2013; accepted 27 May 2013; online 8 June 2013)

In the title complex, [U(C17H14BrN3O2S)O2(C2H5OH)], the UVI cation has a distorted penta­gonal–bipyramidal environment with the penta­gonal plane defined by two N and two O atoms of the tetra­dentate Schiff base ligand and the O atom of the ethanol mol­ecule. Two oxide O atoms occupy the axial positions. The azomethine C=N group and the Br atom are disordered over two positions in a 0.8356 (18):0.1644 (18) ratio. The ethyl­thiolyl group is disordered over three conformations in a 0.8356 (18):0.085 (6):0.079 (6) ratio, and the ethanol ligand is also disordered over three orientations in a 0.470 (16):0.277 (19):0.253 (18) ratio. In the crystal, mol­ecules form centrosymmetric dimers through hydrogen bonding between ethanol O—H donors and phenolate O-atom acceptors. Weak C—H⋯O inter­actions consolidate the crystal packing.

Related literature

For semiconductor materials containing heterocycles, see: Centore, Ricciotti et al. (2012[Centore, R., Ricciotti, L., Carella, A., Roviello, A., Causà, M., Barra, M., Ciccullo, F. & Cassinese, A. (2012). Org. Electron. 13, 2083-2093.]). For the structural and theoret­ical analysis of conjugation in sulfur-containing metal­organic compounds, see: Takjoo et al. (2011[Takjoo, R., Centore, R., Hakimi, M., Beyramabadi, A. S. & Morsali, A. (2011). Inorg. Chim. Acta, 371, 36-41.]); Takjoo & Centore (2013[Takjoo, R. & Centore, R. (2013). J. Mol. Struct. 1031, 180-185.]). For recent examples of hydrogen bonding in crystals, see: Centore et al. (2013[Centore, R., Piccialli, V. & Tuzi, A. (2013). Acta Cryst. E69, o802-o803.]). For the structure of a related complex, see: Takjoo et al. (2012[Takjoo, R., Ahmadi, M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m279-m280.]).

[Scheme 1]

Experimental

Crystal data
  • [U(C17H14BrN3O2S)O2(C2H6O)]

  • Mr = 720.38

  • Triclinic, [P \overline 1]

  • a = 10.3720 (17) Å

  • b = 11.1380 (14) Å

  • c = 11.167 (1) Å

  • α = 69.428 (10)°

  • β = 86.870 (11)°

  • γ = 70.379 (10)°

  • V = 1134.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 9.04 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.20 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.123, Tmax = 0.265

  • 15923 measured reflections

  • 5207 independent reflections

  • 4347 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.068

  • S = 1.08

  • 5207 reflections

  • 306 parameters

  • 53 restraints

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −1.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5A—H5A⋯O1i 0.78 1.89 2.618 (5) 155
C7—H7⋯O3ii 0.93 2.53 3.235 (6) 133
C6—H6⋯O3ii 0.93 2.63 3.368 (6) 137
C11—H11⋯O4iii 0.93 2.66 3.443 (7) 143
C19A—H19B⋯O4i 0.96 2.58 3.451 (19) 151
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y, -z+2; (iii) -x, -y+1, -z+1.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Condensation between S-alkyl-isothiosemicarbazides and salicylaldehyde analogues affords Schiff bases, called isothiosemicarbazones, that can act as tridentate donor ligands, Fig. 1 (a). Isothiosemicarbazones are versatile ligands because by varying the substituents on sulfur and salicylaldehyde, and by changing the metal ion, a tuning of the properties of the corresponding complexes can be achieved in principle. As shown in Fig. 1 (b), S-alkylisothiosemicarbazones can react with aldehydes. The template reaction of S-alkylisothiosemicarbazones with substituted salicyladehydes, in the presence of metal ions fitted for square planar coordination (e. g. VO(II), Cu(II), Ni(II), UO2(II)) can lead to tetradentate (N, N, O, O) complexes, Fig. 1(b).

Following our interest in the synthesis and structural characterization of organic and metallorganic compounds containing heterocycles for applications as advanced materials and bioactive compounds (Centore, Ricciotti et al., 2012; Takjoo et al., 2011; Takjoo & Centore, 2013), and in the analysis of crystal structures controlled by the formation of H bonds (Centore et al., 2013), we report the structural investigation of the title compound, (I). (I) was obtained by the template reaction of 5-bromo-2-hydroxybenzaldehyde-S- ethylisothiosemicarbazone with salicylaldehyde, in the presence of uranyl acetate.

The molecular structure of (I) is shown in Fig. 2. The heptacoordination around the metal atom can be described as distorted pentagonal bipyramid. The equatorial plane is occupied by the four donor atoms of the tetradentate chelate ligand (N, N, O, O) and by the oxygen donor atom of the coordinated ethanol molecule. The axial positions are occupied by the uranyl oxygen atoms. The bond lengths between uranium and the equatorial donors range between 2.221 (4) Å and 2.576 (4) Å, while the two bond lengths within the uranyl group are significantly shorter (1.764 (4) Å and 1.771 (3) Å). In the equatorial plane, two six-membered and one five-membered rings are formed involving the metal atom. The five membered ring is almost planar, while the two six-membered rings are in envelope conformation, with the metal atom out of the plane. The bite angles corresponding to the formation of the six-membered rings are slightly larger than the five membered ring.

Molecules of the title compound have H bonding donor and acceptor groups, and the crystal packing shows the formation of H bonds. In the crystal, molecules form centrosymmetric dimers through H bonding between O–H donors and phenolato O- acceptors, giving rise to ring patterns R22(8). The rings include the uranium atoms, Fig. 3. The same pattern is present in the crystals of a closely related compound (Takjoo et al., 2012). The oxygen atoms of the uranyl moiety are involved in weak H bonding interactions. In the case of O3, aromatic and imino C–H are the weak donors, and R12(6) ring patterns are observed. In the case of O4, methyl and aromatic C–H are the weak donors, Fig. 4.

Related literature top

For semiconductor materials containing heterocycles, see: Centore, Ricciotti et al. (2012). For the structural and theoretical analysis of conjugation in sulfur-containing metallorganic compounds, see: Takjoo et al. (2011); Takjoo & Centore (2013). For recent examples of hydrogen bonding in crystals, see: Centore et al. (2013). For the structure of a related complex, see: Takjoo et al. (2012).

Experimental top

Preparation of 5-Bromo-2-hydroxybenzaldehyde-S-ethylisothiosemicarbazone hydroiodide (H2L.HI). A solution of thiosemicarbazide (0.91 g, 10 mmol) in ethanol (5 mL) was treated with ethyliodide (1.55 g, 10 mmol) and was refluxed for 3 h at 90 °C. 5-Bromo-2-hydroxybenzaldehyde (2.011 g, 10 mmol) was then added to the resulting solution and the reflux was continued for an additional 1 h. A yellow precipitate formed that was filtered off, washed with cold ethanol and dried in vacuum over silica gel. Yield 75%. Mp. 190 °C.

Preparation of the title compound. H2L.HI (0.430 g, 1.0 mmol) and salicylaldehyde (0.12 g, 1.0 mmol) were dissolved in warm ethanol (10 mL). To this solution, a solution of UO2(OAc)2.2H2O (0.42 g, 1.0 mmol) in 10 mL ethanol was added. The resulting solution was refluxed for 30 min. By slow evaporation at room temperature, red crystals of the title compound formed after several days. The crystals were collected by filtration, washed with diethyl ether and dried in air. Yield 37%. Mp. 156 °C (dec). Anal. Calc. for C19H20N3O5SBrU: C, 31.68; H, 2.80; N, 5.83%. Found: C, 31.43; H, 2.72; N, 5.74%. IR (cm-1): ν(C–H) 2931–3004 w; ν(C=N) + ν(C=C) 1604 vs, 1527 s; ν(C–O) 1288 s; ν(N–N) 1010 w; νasy(trans-UO2) 910 s; νsy(trans-UO2) 877 m. UV-VIS [MeOH, λmax/nm (log εmax/M-1 cm-1)]: 222 (4.39), 248 (4.34), 312 (4.20), 410 (3.79). Molar conductivity (1.0×10-3 M; MeOH): 6 Ω-1 cm2 mol-1.

Refinement top

The H atom of the hydroxy group was located in difference map. All other H atoms were generated stereochemically and were refined by the riding model. For all H atoms Uiso=1.2×Ueq of the carrier atom was assumed (1.5 for methyl groups). The crystal structure shows a remarkable degree of static disorder. In fact, molecules enter the crystal in two orientations of the tetradentate ligand, which are nearly obtained by rotation of 180° around the line joining U1 with the barycentre of N2A–C8A. There results a complete superposition of the atoms of the tetradentate ligand in the two orientations, with exception for bromine, sulfur and the methyl group of the S-ethyl tail. These atoms were found in difmaps and were refined. By refining also the occupancy factor, it resulted that the main orientation has an occupation factor higher by far than the other (0.836 (2) and 0.164 (2)). The resolved atoms of the low populated split positions were refined with some restraints on bond lengths and angles in order to keep the same geometry of the higher occupancy position (SAME instruction of SHELXL97). Also the ethanol molecule coordinated to uranyl is disordered over three positions. Since the methylene carbon atoms of the three different positions of the ethanol molecule are quite close to each other, they were refined with isotropic displacement parameters.

Structure description top

Condensation between S-alkyl-isothiosemicarbazides and salicylaldehyde analogues affords Schiff bases, called isothiosemicarbazones, that can act as tridentate donor ligands, Fig. 1 (a). Isothiosemicarbazones are versatile ligands because by varying the substituents on sulfur and salicylaldehyde, and by changing the metal ion, a tuning of the properties of the corresponding complexes can be achieved in principle. As shown in Fig. 1 (b), S-alkylisothiosemicarbazones can react with aldehydes. The template reaction of S-alkylisothiosemicarbazones with substituted salicyladehydes, in the presence of metal ions fitted for square planar coordination (e. g. VO(II), Cu(II), Ni(II), UO2(II)) can lead to tetradentate (N, N, O, O) complexes, Fig. 1(b).

Following our interest in the synthesis and structural characterization of organic and metallorganic compounds containing heterocycles for applications as advanced materials and bioactive compounds (Centore, Ricciotti et al., 2012; Takjoo et al., 2011; Takjoo & Centore, 2013), and in the analysis of crystal structures controlled by the formation of H bonds (Centore et al., 2013), we report the structural investigation of the title compound, (I). (I) was obtained by the template reaction of 5-bromo-2-hydroxybenzaldehyde-S- ethylisothiosemicarbazone with salicylaldehyde, in the presence of uranyl acetate.

The molecular structure of (I) is shown in Fig. 2. The heptacoordination around the metal atom can be described as distorted pentagonal bipyramid. The equatorial plane is occupied by the four donor atoms of the tetradentate chelate ligand (N, N, O, O) and by the oxygen donor atom of the coordinated ethanol molecule. The axial positions are occupied by the uranyl oxygen atoms. The bond lengths between uranium and the equatorial donors range between 2.221 (4) Å and 2.576 (4) Å, while the two bond lengths within the uranyl group are significantly shorter (1.764 (4) Å and 1.771 (3) Å). In the equatorial plane, two six-membered and one five-membered rings are formed involving the metal atom. The five membered ring is almost planar, while the two six-membered rings are in envelope conformation, with the metal atom out of the plane. The bite angles corresponding to the formation of the six-membered rings are slightly larger than the five membered ring.

Molecules of the title compound have H bonding donor and acceptor groups, and the crystal packing shows the formation of H bonds. In the crystal, molecules form centrosymmetric dimers through H bonding between O–H donors and phenolato O- acceptors, giving rise to ring patterns R22(8). The rings include the uranium atoms, Fig. 3. The same pattern is present in the crystals of a closely related compound (Takjoo et al., 2012). The oxygen atoms of the uranyl moiety are involved in weak H bonding interactions. In the case of O3, aromatic and imino C–H are the weak donors, and R12(6) ring patterns are observed. In the case of O4, methyl and aromatic C–H are the weak donors, Fig. 4.

For semiconductor materials containing heterocycles, see: Centore, Ricciotti et al. (2012). For the structural and theoretical analysis of conjugation in sulfur-containing metallorganic compounds, see: Takjoo et al. (2011); Takjoo & Centore (2013). For recent examples of hydrogen bonding in crystals, see: Centore et al. (2013). For the structure of a related complex, see: Takjoo et al. (2012).

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. (a) General synthesis of isothiosemicarbazones; (b) Template reaction between an isothiosemicarbazone, a substituted salicylaldehyde and a metal ion affording a complex with a tetradentate isothiosemicarbazate ligand.
[Figure 2] Fig. 2. View of (I) showing the atomic numbering and 30% probability displacement ellipsoids. For the disordered atoms, only the major components are shown.
[Figure 3] Fig. 3. Centrosymmetric H bonded dimer in (I). H bonds are represented by dashed lines. For the disordered atoms, only the major components are shown.
[Figure 4] Fig. 4. Weak C—H···O interactions (dashed lines), involving oxygen atoms of the uranyl group. For the disordered atoms, only the major components are shown.
{4-Bromo-2-[(2-{(ethylsulfanyl)[(2-oxidobenzylidene-κO)amino-κN]methylidene}hydrazinylidene-κN1)methyl]phenolato-κO}(ethanol-κO)dioxidouranium(VI) top
Crystal data top
[U(C17H14BrN3O2S)O2(C2H6O)]Z = 2
Mr = 720.38F(000) = 676
Triclinic, P1Dx = 2.109 Mg m3
a = 10.3720 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1380 (14) ÅCell parameters from 110 reflections
c = 11.167 (1) Åθ = 4.6–23.6°
α = 69.428 (10)°µ = 9.04 mm1
β = 86.870 (11)°T = 293 K
γ = 70.379 (10)°Prism, red
V = 1134.7 (3) Å30.40 × 0.20 × 0.20 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
5207 independent reflections
Radiation source: normal-focus sealed tube4347 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.3°
CCD rotation images, thick slices scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 1414
Tmin = 0.123, Tmax = 0.265l = 1413
15923 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0179P)2 + 1.5042P]
where P = (Fo2 + 2Fc2)/3
5207 reflections(Δ/σ)max = 0.001
306 parametersΔρmax = 1.02 e Å3
53 restraintsΔρmin = 1.22 e Å3
Crystal data top
[U(C17H14BrN3O2S)O2(C2H6O)]γ = 70.379 (10)°
Mr = 720.38V = 1134.7 (3) Å3
Triclinic, P1Z = 2
a = 10.3720 (17) ÅMo Kα radiation
b = 11.1380 (14) ŵ = 9.04 mm1
c = 11.167 (1) ÅT = 293 K
α = 69.428 (10)°0.40 × 0.20 × 0.20 mm
β = 86.870 (11)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
5207 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4347 reflections with I > 2σ(I)
Tmin = 0.123, Tmax = 0.265Rint = 0.045
15923 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02953 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.08Δρmax = 1.02 e Å3
5207 reflectionsΔρmin = 1.22 e Å3
306 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.6222 (5)0.4166 (5)1.0165 (5)0.0480 (13)
H1B0.65350.49671.08740.058*0.1644 (18)
Br1A0.68347 (8)0.57406 (7)1.16068 (8)0.0615 (2)0.8356 (18)
Br1B0.0277 (5)0.9058 (5)0.2778 (5)0.0882 (18)0.1644 (18)
C20.6697 (6)0.4110 (6)0.8960 (6)0.0547 (14)
H20.73390.48840.88710.066*
C30.6239 (5)0.2946 (6)0.7911 (6)0.0494 (13)
H30.65780.29350.71200.059*
C40.5257 (5)0.1758 (5)0.8013 (5)0.0399 (11)
O10.4757 (4)0.0655 (3)0.6971 (3)0.0439 (8)
C50.4789 (5)0.1789 (5)0.9220 (5)0.0389 (11)
C60.5280 (5)0.3005 (5)1.0281 (5)0.0436 (12)
H60.49620.30271.10810.052*
C70.3759 (5)0.0669 (5)0.9449 (5)0.0405 (11)
H70.34270.08491.02610.049*
N10.3248 (4)0.0560 (4)0.8644 (4)0.0395 (9)
N2A0.2242 (5)0.1373 (5)0.9202 (4)0.0480 (11)0.8356 (18)
N2B0.1747 (5)0.2653 (5)0.8539 (5)0.0441 (11)0.1644 (18)
C8A0.1747 (5)0.2653 (5)0.8539 (5)0.0441 (11)0.8356 (18)
S1A0.05176 (18)0.36638 (19)0.92399 (19)0.0574 (5)0.8356 (18)
C16A0.0450 (13)0.2473 (13)1.0815 (13)0.088 (4)0.8356 (18)
H16A0.13760.18921.11700.106*0.8356 (18)
H16B0.00390.29721.13770.106*0.8356 (18)
C17A0.0377 (13)0.1597 (13)1.0763 (14)0.128 (5)0.8356 (18)
H17A0.03910.09731.16110.192*0.8356 (18)
H17B0.00340.10941.02150.192*0.8356 (18)
H17C0.12990.21691.04310.192*0.8356 (18)
C8B0.2242 (5)0.1373 (5)0.9202 (4)0.0480 (11)0.085 (6)
S1B0.172 (3)0.0871 (19)1.0706 (17)0.062 (4)*0.085 (6)
C16B0.027 (5)0.231 (5)1.075 (5)0.088 (4)0.085 (6)
H16C0.03490.31611.01640.106*0.085 (6)
H16D0.05840.22361.05220.106*0.085 (6)
C17B0.033 (7)0.223 (6)1.213 (5)0.128 (5)0.085 (6)
H17D0.04250.29591.22420.192*0.085 (6)
H17E0.11790.23151.23260.192*0.085 (6)
H17F0.02790.13721.26870.192*0.085 (6)
C8C0.2242 (5)0.1373 (5)0.9202 (4)0.0480 (11)0.079 (6)
S1C0.127 (3)0.0792 (19)1.043 (2)0.062 (4)*0.079 (6)
C16C0.027 (5)0.231 (5)1.075 (5)0.088 (4)0.079 (6)
H16E0.05710.30541.02210.106*0.079 (6)
H16F0.06830.25411.04740.106*0.079 (6)
C17C0.033 (7)0.223 (6)1.213 (5)0.128 (5)0.079 (6)
H17G0.03210.30431.22080.192*0.079 (6)
H17H0.12370.21521.23720.192*0.079 (6)
H17I0.01160.14511.26740.192*0.079 (6)
N30.2190 (4)0.3221 (4)0.7343 (4)0.0399 (9)
C90.1450 (5)0.4453 (5)0.6638 (6)0.0464 (12)
H90.06540.48550.69800.056*
C100.1708 (5)0.5257 (5)0.5413 (6)0.0446 (12)
C110.0656 (6)0.6486 (6)0.4747 (6)0.0568 (15)
H110.01680.67530.51150.068*
C120.0856 (7)0.7270 (5)0.3570 (7)0.0654 (17)
H12A0.01410.80590.31250.079*0.8356 (18)
C130.2068 (8)0.6951 (7)0.3002 (7)0.0682 (18)
H130.21720.75230.21930.082*
C140.3117 (7)0.5792 (7)0.3632 (6)0.0593 (15)
H140.39430.55800.32530.071*
C150.2972 (6)0.4909 (6)0.4848 (6)0.0460 (12)
O20.3995 (4)0.3803 (4)0.5465 (4)0.0528 (9)
O30.5501 (4)0.1468 (4)0.7532 (4)0.0489 (9)
O40.2827 (3)0.1828 (4)0.5463 (4)0.0466 (8)
U10.415731 (18)0.164807 (19)0.650973 (18)0.03560 (6)
O5A0.5794 (4)0.1272 (4)0.4954 (4)0.0483 (9)0.470 (16)
H5A0.54860.09950.45280.058*0.470 (16)
C18A0.7137 (10)0.1409 (15)0.4828 (12)0.042 (3)*0.470 (16)
H18A0.71100.22330.49580.051*0.470 (16)
H18B0.74300.14640.39760.051*0.470 (16)
C19A0.8114 (16)0.0191 (16)0.581 (2)0.106 (8)0.470 (16)
H19A0.90240.02330.57130.159*0.470 (16)
H19B0.80960.06220.57060.159*0.470 (16)
H19C0.78490.01770.66530.159*0.470 (16)
O5B0.5794 (4)0.1272 (4)0.4954 (4)0.0483 (9)0.277 (19)
H5B0.54870.09920.45350.058*0.277 (19)
C18B0.683 (2)0.192 (3)0.462 (3)0.072 (9)*0.277 (19)
H18C0.70960.20710.53530.086*0.277 (19)
H18D0.64480.27960.39350.086*0.277 (19)
C19B0.8029 (17)0.1076 (18)0.4192 (18)0.104 (6)*0.277 (19)
H19D0.87520.14520.41030.156*0.277 (19)
H19E0.77990.10530.33820.156*0.277 (19)
H19F0.83290.01670.48140.156*0.277 (19)
O5C0.5794 (4)0.1272 (4)0.4954 (4)0.0483 (9)0.253 (18)
H5C0.54760.10030.45330.058*0.253 (18)
C18C0.7286 (16)0.073 (3)0.531 (2)0.055 (8)*0.253 (18)
H18E0.74820.10980.59170.067*0.253 (18)
H18F0.75790.02580.57210.067*0.253 (18)
C19C0.8029 (17)0.1076 (18)0.4192 (18)0.104 (6)*0.253 (18)
H19G0.89950.07130.44360.156*0.253 (18)
H19H0.77500.20500.37960.156*0.253 (18)
H19I0.78400.07000.35970.156*0.253 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.047 (3)0.045 (3)0.043 (3)0.007 (2)0.012 (2)0.011 (2)
Br1A0.0653 (5)0.0427 (4)0.0608 (5)0.0068 (3)0.0091 (4)0.0090 (3)
Br1B0.083 (3)0.083 (3)0.087 (4)0.036 (3)0.015 (3)0.005 (3)
C20.046 (3)0.053 (3)0.060 (4)0.000 (3)0.001 (3)0.029 (3)
C30.047 (3)0.050 (3)0.047 (3)0.001 (2)0.005 (2)0.027 (3)
C40.041 (3)0.043 (3)0.038 (3)0.011 (2)0.001 (2)0.019 (2)
O10.056 (2)0.0418 (19)0.0314 (18)0.0056 (16)0.0018 (16)0.0199 (15)
C50.038 (2)0.044 (3)0.038 (3)0.010 (2)0.000 (2)0.021 (2)
C60.048 (3)0.045 (3)0.037 (3)0.011 (2)0.001 (2)0.017 (2)
C70.044 (3)0.045 (3)0.031 (3)0.011 (2)0.005 (2)0.016 (2)
N10.040 (2)0.042 (2)0.035 (2)0.0048 (18)0.0051 (17)0.0205 (18)
N2A0.046 (2)0.054 (3)0.044 (3)0.008 (2)0.014 (2)0.027 (2)
N2B0.041 (3)0.049 (3)0.046 (3)0.010 (2)0.009 (2)0.027 (2)
C8A0.041 (3)0.049 (3)0.046 (3)0.010 (2)0.009 (2)0.027 (2)
S1A0.0515 (10)0.0548 (10)0.0647 (12)0.0065 (8)0.0199 (8)0.0330 (9)
C16A0.098 (7)0.074 (6)0.097 (7)0.026 (5)0.059 (5)0.046 (5)
C17A0.147 (11)0.111 (9)0.149 (13)0.061 (9)0.077 (10)0.066 (9)
C8B0.046 (2)0.054 (3)0.044 (3)0.008 (2)0.014 (2)0.027 (2)
C16B0.098 (7)0.074 (6)0.097 (7)0.026 (5)0.059 (5)0.046 (5)
C17B0.147 (11)0.111 (9)0.149 (13)0.061 (9)0.077 (10)0.066 (9)
C8C0.046 (2)0.054 (3)0.044 (3)0.008 (2)0.014 (2)0.027 (2)
C16C0.098 (7)0.074 (6)0.097 (7)0.026 (5)0.059 (5)0.046 (5)
C17C0.147 (11)0.111 (9)0.149 (13)0.061 (9)0.077 (10)0.066 (9)
N30.039 (2)0.042 (2)0.043 (2)0.0112 (18)0.0030 (18)0.0221 (19)
C90.037 (3)0.044 (3)0.061 (4)0.007 (2)0.002 (2)0.028 (3)
C100.045 (3)0.039 (3)0.054 (3)0.014 (2)0.001 (2)0.019 (2)
C110.050 (3)0.048 (3)0.069 (4)0.012 (3)0.009 (3)0.020 (3)
C120.073 (4)0.052 (4)0.064 (4)0.023 (3)0.015 (3)0.006 (3)
C130.083 (5)0.067 (4)0.054 (4)0.036 (4)0.005 (3)0.008 (3)
C140.067 (4)0.064 (4)0.055 (4)0.034 (3)0.010 (3)0.021 (3)
C150.048 (3)0.045 (3)0.052 (3)0.020 (2)0.000 (2)0.021 (3)
O20.046 (2)0.047 (2)0.067 (3)0.0162 (17)0.0111 (19)0.0222 (19)
O30.0410 (19)0.068 (2)0.045 (2)0.0157 (18)0.0043 (16)0.0310 (19)
O40.0400 (18)0.054 (2)0.049 (2)0.0104 (16)0.0014 (16)0.0258 (18)
U10.03288 (9)0.04260 (11)0.03333 (10)0.00789 (7)0.00249 (6)0.02045 (7)
O5A0.0432 (19)0.071 (3)0.044 (2)0.0205 (18)0.0099 (16)0.0346 (19)
C19A0.057 (9)0.090 (13)0.17 (2)0.011 (9)0.029 (12)0.051 (14)
O5B0.0432 (19)0.071 (3)0.044 (2)0.0205 (18)0.0099 (16)0.0346 (19)
O5C0.0432 (19)0.071 (3)0.044 (2)0.0205 (18)0.0099 (16)0.0346 (19)
Geometric parameters (Å, º) top
C1—C61.378 (7)C9—H90.9300
C1—C21.395 (8)C10—C111.410 (7)
C1—Br1A1.858 (5)C10—C151.417 (8)
C1—H1B0.9300C11—C121.348 (9)
C2—C31.364 (8)C11—H110.9300
C2—H20.9300C12—C131.372 (10)
C3—C41.410 (7)C12—H12A0.9300
C3—H30.9300C13—C141.360 (9)
C4—O11.328 (6)C13—H130.9300
C4—C51.400 (7)C14—C151.404 (8)
O1—U12.295 (3)C14—H140.9300
C5—C61.405 (7)C15—O21.312 (7)
C5—C71.436 (7)O2—U12.221 (4)
C6—H60.9300O3—U11.764 (4)
C7—N11.290 (6)O4—U11.771 (3)
C7—H70.9300U1—O5A2.406 (3)
N1—N2A1.410 (5)O5A—C18A1.445 (10)
N1—U12.556 (4)O5A—H5A0.7809
S1A—C16A1.808 (13)O5A—H5B0.7768
C16A—C17A1.517 (9)O5A—H5C0.7761
C16A—H16A0.9700C18A—C19A1.492 (9)
C16A—H16B0.9700C18A—H18A0.9700
C17A—H17A0.9600C18A—H18B0.9700
C17A—H17B0.9600C19A—H19A0.9600
C17A—H17C0.9600C19A—H19B0.9600
S1B—C16B1.81 (3)C19A—H19C0.9600
C16B—C17B1.52 (2)C18B—C19B1.455 (18)
C16B—H16C0.9700C18B—H18C0.9700
C16B—H16D0.9700C18B—H18D0.9700
C17B—H17D0.9600C19B—H19D0.9600
C17B—H17E0.9600C19B—H19E0.9600
C17B—H17F0.9600C19B—H19F0.9600
N3—C91.301 (7)C18C—H18E0.9700
N3—U12.576 (4)C18C—H18F0.9700
C9—C101.416 (8)
C6—C1—C2118.4 (5)C13—C12—H12A118.6
C6—C1—Br1A119.5 (4)C14—C13—C12119.4 (6)
C2—C1—Br1A122.1 (4)C14—C13—H13120.3
C6—C1—H1B120.8C12—C13—H13120.3
C2—C1—H1B120.8C13—C14—C15121.0 (6)
Br1A—C1—H1B1.4C13—C14—H14119.5
C3—C2—C1121.4 (5)C15—C14—H14119.5
C3—C2—H2119.3O2—C15—C14120.9 (5)
C1—C2—H2119.3O2—C15—C10120.6 (5)
C2—C3—C4120.7 (5)C14—C15—C10118.5 (5)
C2—C3—H3119.7C15—O2—U1133.4 (3)
C4—C3—H3119.7O3—U1—O4179.05 (17)
O1—C4—C5121.2 (4)O3—U1—O289.52 (17)
O1—C4—C3120.1 (5)O4—U1—O290.23 (16)
C5—C4—C3118.6 (5)O3—U1—O193.70 (16)
C4—O1—U1134.9 (3)O4—U1—O186.22 (15)
C4—C5—C6119.3 (4)O2—U1—O1159.51 (13)
C4—C5—C7124.2 (5)O3—U1—O5A88.85 (14)
C6—C5—C7116.3 (5)O4—U1—O5A90.21 (14)
C1—C6—C5121.5 (5)O2—U1—O5A82.02 (14)
C1—C6—H6119.2O1—U1—O5A77.82 (13)
C5—C6—H6119.2O3—U1—N182.19 (16)
N1—C7—C5126.6 (5)O4—U1—N198.66 (16)
N1—C7—H7116.7O2—U1—N1130.39 (14)
C5—C7—H7116.7O1—U1—N170.10 (12)
C7—N1—N2A110.6 (4)O5A—U1—N1145.93 (13)
C7—N1—U1127.6 (3)O3—U1—N397.53 (15)
N2A—N1—U1120.6 (3)O4—U1—N383.25 (14)
C17A—C16A—S1A111.4 (10)O2—U1—N370.53 (14)
C17A—C16A—H16A109.4O1—U1—N3128.83 (13)
S1A—C16A—H16A109.4O5A—U1—N3151.69 (14)
C17A—C16A—H16B109.4N1—U1—N362.37 (13)
S1A—C16A—H16B109.4C18A—O5A—U1129.7 (6)
H16A—C16A—H16B108.0C18A—O5A—H5A123.9
C16A—C17A—H17A109.5U1—O5A—H5A106.3
C16A—C17A—H17B109.5C18A—O5A—H5B124.2
H17A—C17A—H17B109.5U1—O5A—H5B106.0
C16A—C17A—H17C109.5H5A—O5A—H5B0.4
H17A—C17A—H17C109.5C18A—O5A—H5C124.8
H17B—C17A—H17C109.5U1—O5A—H5C105.4
C17B—C16B—S1B104 (2)H5A—O5A—H5C0.9
C17B—C16B—H16C111.0H5B—O5A—H5C1.0
S1B—C16B—H16C111.0O5A—C18A—C19A108.0 (10)
C17B—C16B—H16D111.0O5A—C18A—H18A110.1
S1B—C16B—H16D111.0C19A—C18A—H18A110.1
H16C—C16B—H16D109.0O5A—C18A—H18B110.1
C16B—C17B—H17D109.5C19A—C18A—H18B110.1
C16B—C17B—H17E109.5H18A—C18A—H18B108.4
H17D—C17B—H17E109.5C18A—C19A—H19A109.5
C16B—C17B—H17F109.5C18A—C19A—H19B109.5
H17D—C17B—H17F109.5H19A—C19A—H19B109.5
H17E—C17B—H17F109.5C18A—C19A—H19C109.5
C9—N3—U1123.7 (4)H19A—C19A—H19C109.5
N3—C9—C10127.9 (5)H19B—C19A—H19C109.5
N3—C9—H9116.0C19B—C18B—H18C109.4
C10—C9—H9116.0C19B—C18B—H18D109.4
C11—C10—C9117.6 (5)H18C—C18B—H18D108.0
C11—C10—C15118.9 (6)C18B—C19B—H19D109.5
C9—C10—C15123.5 (5)C18B—C19B—H19E109.5
C12—C11—C10119.3 (6)H19D—C19B—H19E109.5
C12—C11—H11120.3C18B—C19B—H19F109.5
C10—C11—H11120.3H19D—C19B—H19F109.5
C11—C12—C13122.8 (6)H19E—C19B—H19F109.5
C11—C12—H12A118.6H18E—C18C—H18F108.1
C6—C1—C2—C30.6 (9)C15—O2—U1—O431.2 (5)
Br1A—C1—C2—C3179.9 (5)C15—O2—U1—O1111.0 (5)
C1—C2—C3—C40.5 (9)C15—O2—U1—O5A121.4 (5)
C2—C3—C4—O1175.9 (5)C15—O2—U1—N170.4 (5)
C2—C3—C4—C51.7 (8)C15—O2—U1—N351.5 (5)
C5—C4—O1—U140.8 (7)C4—O1—U1—O336.0 (5)
C3—C4—O1—U1141.7 (4)C4—O1—U1—O4144.9 (5)
O1—C4—C5—C6175.9 (5)C4—O1—U1—O2134.6 (5)
C3—C4—C5—C61.7 (8)C4—O1—U1—O5A124.0 (5)
O1—C4—C5—C70.2 (8)C4—O1—U1—N144.3 (4)
C3—C4—C5—C7177.8 (5)C4—O1—U1—N366.7 (5)
C2—C1—C6—C50.5 (8)C7—N1—U1—O368.2 (4)
Br1A—C1—C6—C5179.9 (4)N2A—N1—U1—O398.1 (4)
C4—C5—C6—C10.6 (8)C7—N1—U1—O4111.4 (4)
C7—C5—C6—C1177.0 (5)N2A—N1—U1—O482.3 (4)
C4—C5—C7—N19.6 (9)C7—N1—U1—O2150.8 (4)
C6—C5—C7—N1174.2 (5)N2A—N1—U1—O215.5 (4)
C5—C7—N1—N2A178.9 (5)C7—N1—U1—O128.7 (4)
C5—C7—N1—U113.7 (8)N2A—N1—U1—O1165.0 (4)
U1—N3—C9—C1013.0 (8)C7—N1—U1—O5A8.0 (6)
N3—C9—C10—C11170.5 (5)N2A—N1—U1—O5A174.3 (3)
N3—C9—C10—C1511.3 (9)C7—N1—U1—N3170.9 (5)
C9—C10—C11—C12179.0 (6)N2A—N1—U1—N34.6 (3)
C15—C10—C11—C122.7 (8)C9—N3—U1—O3117.9 (4)
C10—C11—C12—C132.6 (10)C9—N3—U1—O461.6 (4)
C11—C12—C13—C140.8 (11)C9—N3—U1—O231.0 (4)
C12—C13—C14—C150.7 (10)C9—N3—U1—O1141.2 (4)
C13—C14—C15—O2178.7 (6)C9—N3—U1—O5A16.2 (6)
C13—C14—C15—C100.5 (9)C9—N3—U1—N1165.1 (4)
C11—C10—C15—O2177.0 (5)O3—U1—O5A—C18A20.1 (8)
C9—C10—C15—O21.1 (8)O4—U1—O5A—C18A159.7 (8)
C11—C10—C15—C141.2 (8)O2—U1—O5A—C18A69.5 (8)
C9—C10—C15—C14179.4 (5)O1—U1—O5A—C18A114.2 (8)
C14—C15—O2—U1133.5 (5)N1—U1—O5A—C18A94.4 (8)
C10—C15—O2—U148.3 (7)N3—U1—O5A—C18A83.7 (8)
C15—O2—U1—O3149.7 (5)U1—O5A—C18A—C19A77.3 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5A—H5A···O1i0.781.892.618 (5)155
C7—H7···O3ii0.932.533.235 (6)133
C6—H6···O3ii0.932.633.368 (6)137
C11—H11···O4iii0.932.663.443 (7)143
C19A—H19B···O4i0.962.583.451 (19)151
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+2; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[U(C17H14BrN3O2S)O2(C2H6O)]
Mr720.38
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.3720 (17), 11.1380 (14), 11.167 (1)
α, β, γ (°)69.428 (10), 86.870 (11), 70.379 (10)
V3)1134.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)9.04
Crystal size (mm)0.40 × 0.20 × 0.20
Data collection
DiffractometerBruker–Nonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.123, 0.265
No. of measured, independent and
observed [I > 2σ(I)] reflections
15923, 5207, 4347
Rint0.045
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.068, 1.08
No. of reflections5207
No. of parameters306
No. of restraints53
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 1.22

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5A—H5A···O1i0.781.892.618 (5)155
C7—H7···O3ii0.932.533.235 (6)133
C6—H6···O3ii0.932.633.368 (6)137
C11—H11···O4iii0.932.663.443 (7)143
C19A—H19B···O4i0.962.583.451 (19)151
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+2; (iii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Centro Inter­dipartimentale di Metodologie Chimico–Fisiche, Università degli Studi di Napoli "Federico II". Thanks are also due to Dr Reza Takjoo (Ferdowsi University of Mashhad, Iran) for helpful discussions.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCentore, R., Piccialli, V. & Tuzi, A. (2013). Acta Cryst. E69, o802–o803.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationCentore, R., Ricciotti, L., Carella, A., Roviello, A., Causà, M., Barra, M., Ciccullo, F. & Cassinese, A. (2012). Org. Electron. 13, 2083–2093.  Web of Science CrossRef CAS Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakjoo, R., Ahmadi, M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m279–m280.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationTakjoo, R. & Centore, R. (2013). J. Mol. Struct. 1031, 180–185.  Web of Science CSD CrossRef CAS Google Scholar
First citationTakjoo, R., Centore, R., Hakimi, M., Beyramabadi, A. S. & Morsali, A. (2011). Inorg. Chim. Acta, 371, 36–41.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds