metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­aqua­bis­[(E)-3-(di­methyl­amino)-1-(2-pyrid­yl)prop-2-en-1-one-κ2N1,O]cobalt(II) dinitrate dihydrate

aDeparment of Chemistry and Chemical Engineering, Hefei Teachers College, Hefei, 230061, People's Republic of China
*Correspondence e-mail: bi010101@126.com

(Received 2 May 2009; accepted 5 May 2009; online 14 May 2009)

In the title compound, [Co(C10H12N2O)2(H2O)2](NO3)2·2H2O, the CoII ion, located on an inversion center, is trans-coordinated by two N,O-bidentate chelating (E)-3-(dimethyl­amino)-1-(2-pyrid­yl)prop-2-en-1-one ligands and by two water mol­ecules in a slightly distorted octa­hedral geometry. Inter­molecular O—H⋯O hydrogen bonds link the cations, anions and water mol­ecules into layers parallel to the ac plane. The crystal packing also exhibits weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the crystal structures of related complexes, see: Hu & Tian (2007[Hu, T.-L. & Tian, J.-L. (2007). Acta Cryst. E63, m1092-m1093.]); Li et al. (2005[Li, G.-X., Li, J.-Q. & Kang, X.-Z. (2005). Acta Cryst. E61, m410-m411.]); Yan et al. (2004[Yan, Z.-Q. (2004). Acta Cryst. E60, m1957-m1958.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C10H12N2O)2(H2O)2](NO3)2·2H2O

  • Mr = 607.45

  • Triclinic, [P \overline 1]

  • a = 7.8220 (19) Å

  • b = 8.646 (2) Å

  • c = 11.088 (3) Å

  • α = 98.439 (4)°

  • β = 101.239 (4)°

  • γ = 108.467 (4)°

  • V = 679.9 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 291 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.802, Tmax = 0.876

  • 3375 measured reflections

  • 2342 independent reflections

  • 2109 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.148

  • S = 1.08

  • 2342 reflections

  • 180 parameters

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O6 0.85 2.22 2.764 (4) 121
O4—H4C⋯O1i 0.85 2.11 2.909 (6) 156
O4—H4C⋯O2i 0.85 2.42 3.173 (5) 149
O6—H6A⋯O3ii 0.85 2.44 3.011 (5) 125
O6—H6C⋯O3 0.85 2.23 2.987 (6) 148
C1—H1⋯O1iii 0.93 2.40 3.161 (5) 138
C4—H4A⋯O6iv 0.93 2.59 3.508 (4) 168
C9—H9C⋯O3v 0.96 2.53 3.351 (7) 144
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z; (iv) x, y+1, z; (v) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The rational design and synthesis of coordinated complexes derived from 2-[3-(dimethylamino)prop-2-enoyl] pyridine have been of increasing interest recently in chemical research (Hu & Tian, 2007; Li et al., 2005; Yan et al., 2004). Here we report a new monomeric cobalt(II) complex, viz.the title compound, [Co(C10H12N2O)2(H2O)2](NO3)2(H2O)2.

The coordination geometry of the Co(II) center is shown in Fig.1. The Co(II) center adopts an octahedral coordination geomtry, where two N atoms and two O atoms from two ligands are in the equatorial plane while the apical positions are occupied by two water molecules. The asymmetric unit of the title compound contains a half of the complex, one crystalline water molecule and one nitrate counter-anion. The coordinated water molecules, crystalline water molecules and nitrate anions are involved in the hydrogen bonding interactions (Table 1).

Related literature top

For the crystal structures of related complexes, see: Hu & Tian (2007); Li et al. (2005); Yan et al. (2004).

Experimental top

All solvents and chemicals were of analytical grade and were used without further purification. For the synthesis of title compoud, a solution of ligand (0.2 mmol) and Co(NO3)2(0.1 mmol) in 50 ml me thanol was refluxed for 2 h, and then cooled to room temperature and filtered. Single crystals suitable for X-ray analysis were grown from the methanol solution by slow evaporation at room temperature in air. Anal. Calcd.for C20H32CoN6O12: C, 39.54; H, 5.31; N, 13.84. Found: C, 39.58; H,5.33; N, 13.79.

Refinement top

All hydrogen atoms were geomemetrically positioned (C—H 0.93–0.97 Å, O–H 0.85 Å) and refined as riding, with Uiso(H)=1.2–1.5 Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the cation of the title compound, the anions and the free water molecules are omitted for clarity, showing 30% probability displacement ellipsoids and the atom-numbering [symmetry code: (A) -x, 1 - y, -z.
trans-Diaquabis[(E)-3-(dimethylamino)-1-(2-pyridyl)prop-2- en-1-one-κ2N1,O]cobalt(II) dinitrate dihydrate top
Crystal data top
[Co(C10H12N2O)2(H2O)2](NO3)2·2H2OZ = 1
Mr = 607.45F(000) = 317
Triclinic, P1Dx = 1.483 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8220 (19) ÅCell parameters from 2398 reflections
b = 8.646 (2) Åθ = 2.6–27.1°
c = 11.088 (3) ŵ = 0.70 mm1
α = 98.439 (4)°T = 291 K
β = 101.239 (4)°Block, purple
γ = 108.467 (4)°0.30 × 0.20 × 0.20 mm
V = 679.9 (3) Å3
Data collection top
SMART CCD area-detector
diffractometer
2342 independent reflections
Radiation source: fine-focus sealed tube2109 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scanθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 99
Tmin = 0.802, Tmax = 0.876k = 610
3375 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1051P)2]
where P = (Fo2 + 2Fc2)/3
2342 reflections(Δ/σ)max = 0.008
180 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Co(C10H12N2O)2(H2O)2](NO3)2·2H2Oγ = 108.467 (4)°
Mr = 607.45V = 679.9 (3) Å3
Triclinic, P1Z = 1
a = 7.8220 (19) ÅMo Kα radiation
b = 8.646 (2) ŵ = 0.70 mm1
c = 11.088 (3) ÅT = 291 K
α = 98.439 (4)°0.30 × 0.20 × 0.20 mm
β = 101.239 (4)°
Data collection top
SMART CCD area-detector
diffractometer
2342 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2109 reflections with I > 2σ(I)
Tmin = 0.802, Tmax = 0.876Rint = 0.024
3375 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.08Δρmax = 0.50 e Å3
2342 reflectionsΔρmin = 0.41 e Å3
180 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.50000.00000.0453 (2)
O40.0719 (3)0.4009 (3)0.1563 (2)0.0642 (6)
H4B0.04330.32110.18000.077*
H4C0.12330.45740.19570.077*
O50.2210 (3)0.6910 (2)0.1225 (2)0.0543 (5)
N20.1181 (3)0.6828 (3)0.0345 (2)0.0452 (5)
N30.6416 (3)1.0643 (3)0.3847 (2)0.0521 (6)
C10.2916 (4)0.6719 (4)0.0148 (3)0.0552 (7)
H10.37440.57190.06840.066*
C20.3542 (5)0.8023 (4)0.0101 (3)0.0619 (8)
H20.47740.79010.02420.074*
C30.2303 (5)0.9504 (4)0.0866 (3)0.0619 (8)
H30.26761.04160.10310.074*
C40.0494 (4)0.9638 (4)0.1394 (3)0.0524 (7)
H4A0.03561.06330.19240.063*
C50.0027 (4)0.8274 (3)0.1122 (2)0.0432 (6)
C60.1935 (4)0.8238 (3)0.1623 (3)0.0437 (6)
C70.3301 (4)0.9602 (3)0.2493 (3)0.0491 (7)
H70.30761.05850.27150.059*
C80.4988 (4)0.9492 (3)0.3024 (3)0.0488 (7)
H80.51280.84770.27650.059*
C90.6421 (6)1.2306 (4)0.4325 (4)0.0769 (11)
H9A0.61021.27930.36300.115*
H9B0.76401.29960.48440.115*
H9C0.55261.22240.48170.115*
C100.8112 (5)1.0349 (5)0.4342 (4)0.0717 (10)
H10A0.80140.92570.39280.108*
H10B0.82921.04150.52320.108*
H10C0.91531.11790.41950.108*
O10.6534 (6)0.5229 (6)0.2379 (3)0.1422 (16)
O20.8756 (5)0.6226 (4)0.3910 (4)0.1396 (16)
O30.6145 (7)0.6168 (4)0.4090 (4)0.1368 (17)
N10.7140 (4)0.5912 (3)0.3458 (3)0.0624 (7)
O60.2256 (4)0.3681 (3)0.3177 (3)0.0876 (8)
H6A0.18950.32790.37780.131*
H6C0.31080.46380.34750.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0425 (3)0.0399 (3)0.0469 (4)0.0153 (2)0.0049 (2)0.0024 (2)
O40.0786 (16)0.0592 (13)0.0621 (13)0.0304 (12)0.0249 (12)0.0131 (11)
O50.0452 (11)0.0460 (11)0.0613 (12)0.0195 (9)0.0002 (9)0.0080 (9)
N20.0417 (12)0.0468 (12)0.0447 (12)0.0182 (10)0.0061 (10)0.0046 (10)
N30.0490 (14)0.0405 (12)0.0561 (15)0.0129 (11)0.0024 (11)0.0001 (11)
C10.0455 (16)0.0598 (18)0.0550 (17)0.0183 (14)0.0059 (13)0.0070 (14)
C20.0496 (17)0.071 (2)0.067 (2)0.0300 (16)0.0088 (15)0.0117 (17)
C30.064 (2)0.065 (2)0.070 (2)0.0393 (17)0.0205 (17)0.0140 (16)
C40.0554 (17)0.0525 (17)0.0516 (17)0.0249 (14)0.0138 (14)0.0053 (13)
C50.0461 (15)0.0428 (14)0.0396 (14)0.0164 (12)0.0111 (12)0.0045 (11)
C60.0444 (15)0.0428 (14)0.0432 (14)0.0166 (12)0.0101 (12)0.0063 (11)
C70.0504 (16)0.0414 (14)0.0525 (16)0.0187 (12)0.0079 (13)0.0033 (12)
C80.0504 (16)0.0395 (14)0.0503 (16)0.0127 (12)0.0089 (13)0.0043 (12)
C90.074 (2)0.0486 (18)0.087 (3)0.0204 (17)0.005 (2)0.0101 (17)
C100.0522 (19)0.065 (2)0.081 (2)0.0204 (16)0.0068 (17)0.0009 (18)
O10.121 (3)0.212 (5)0.060 (2)0.042 (3)0.0073 (19)0.011 (2)
O20.076 (2)0.084 (2)0.202 (4)0.0161 (17)0.033 (2)0.020 (2)
O30.198 (4)0.101 (2)0.179 (4)0.083 (3)0.135 (4)0.050 (2)
N10.0638 (18)0.0571 (16)0.0681 (18)0.0249 (14)0.0141 (15)0.0154 (13)
O60.094 (2)0.0814 (17)0.0736 (17)0.0298 (15)0.0022 (15)0.0041 (14)
Geometric parameters (Å, º) top
Co1—O52.0443 (19)C3—H30.9300
Co1—O5i2.0443 (19)C4—C51.377 (4)
Co1—N2i2.093 (2)C4—H4A0.9300
Co1—N22.093 (2)C5—C61.499 (4)
Co1—O4i2.136 (2)C6—C71.389 (4)
Co1—O42.136 (2)C7—C81.374 (4)
O4—H4B0.8499C7—H70.9300
O4—H4C0.8500C8—H80.9300
O5—C61.266 (3)C9—H9A0.9600
N2—C11.328 (4)C9—H9B0.9600
N2—C51.348 (3)C9—H9C0.9600
N3—C81.305 (4)C10—H10A0.9600
N3—C101.448 (4)C10—H10B0.9600
N3—C91.456 (4)C10—H10C0.9600
C1—C21.378 (5)O1—N11.183 (4)
C1—H10.9300O2—N11.191 (4)
C2—C31.369 (5)O3—N11.192 (4)
C2—H20.9300O6—H6A0.8500
C3—C41.382 (4)O6—H6C0.8500
O5—Co1—O5i180.0C4—C3—H3120.1
O5—Co1—N2i101.59 (8)C5—C4—C3118.9 (3)
O5i—Co1—N2i78.41 (8)C5—C4—H4A120.5
O5—Co1—N278.41 (8)C3—C4—H4A120.5
O5i—Co1—N2101.59 (8)N2—C5—C4121.4 (3)
N2i—Co1—N2180.00 (13)N2—C5—C6113.8 (2)
O5—Co1—O4i90.60 (9)C4—C5—C6124.8 (2)
O5i—Co1—O4i89.40 (9)O5—C6—C7122.7 (3)
N2i—Co1—O4i91.84 (9)O5—C6—C5116.7 (2)
N2—Co1—O4i88.16 (9)C7—C6—C5120.6 (2)
O5—Co1—O489.40 (9)C8—C7—C6119.7 (2)
O5i—Co1—O490.60 (9)C8—C7—H7120.1
N2i—Co1—O488.16 (9)C6—C7—H7120.1
N2—Co1—O491.84 (9)N3—C8—C7127.8 (3)
O4i—Co1—O4180.0N3—C8—H8116.1
Co1—O4—H4B124.2C7—C8—H8116.1
Co1—O4—H4C111.2N3—C9—H9A109.5
H4B—O4—H4C124.4N3—C9—H9B109.5
C6—O5—Co1117.12 (18)H9A—C9—H9B109.5
C1—N2—C5118.9 (2)N3—C9—H9C109.5
C1—N2—Co1127.2 (2)H9A—C9—H9C109.5
C5—N2—Co1113.84 (17)H9B—C9—H9C109.5
C8—N3—C10122.0 (3)N3—C10—H10A109.5
C8—N3—C9122.6 (3)N3—C10—H10B109.5
C10—N3—C9115.5 (3)H10A—C10—H10B109.5
N2—C1—C2122.9 (3)N3—C10—H10C109.5
N2—C1—H1118.6H10A—C10—H10C109.5
C2—C1—H1118.6H10B—C10—H10C109.5
C3—C2—C1118.2 (3)O1—N1—O2117.4 (4)
C3—C2—H2120.9O1—N1—O3121.2 (4)
C1—C2—H2120.9O2—N1—O3121.2 (4)
C2—C3—C4119.7 (3)H6A—O6—H6C109.5
C2—C3—H3120.1
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O60.852.222.764 (4)121
O4—H4C···O1ii0.852.112.909 (6)156
O4—H4C···O2ii0.852.423.173 (5)149
O6—H6A···O3iii0.852.443.011 (5)125
O6—H6C···O30.852.232.987 (6)148
C1—H1···O1i0.932.403.161 (5)138
C4—H4A···O6iv0.932.593.508 (4)168
C9—H9C···O3v0.962.533.351 (7)144
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Co(C10H12N2O)2(H2O)2](NO3)2·2H2O
Mr607.45
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.8220 (19), 8.646 (2), 11.088 (3)
α, β, γ (°)98.439 (4), 101.239 (4), 108.467 (4)
V3)679.9 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerSMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.802, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
3375, 2342, 2109
Rint0.024
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.148, 1.08
No. of reflections2342
No. of parameters180
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.41

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT (Bruker, 2000, SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O60.852.222.764 (4)121.0
O4—H4C···O1i0.852.112.909 (6)156.0
O4—H4C···O2i0.852.423.173 (5)149.0
O6—H6A···O3ii0.852.443.011 (5)125.0
O6—H6C···O30.852.232.987 (6)148.0
C1—H1···O1iii0.932.403.161 (5)138.0
C4—H4A···O6iv0.932.593.508 (4)168.0
C9—H9C···O3v0.962.533.351 (7)144.0
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1, z; (v) x+1, y+2, z+1.
 

Acknowledgements

The author is indebted to the National Natural Science Foundation of China for financial support (grant No. 20871039).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHu, T.-L. & Tian, J.-L. (2007). Acta Cryst. E63, m1092–m1093.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, G.-X., Li, J.-Q. & Kang, X.-Z. (2005). Acta Cryst. E61, m410–m411.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, Z.-Q. (2004). Acta Cryst. E60, m1957–m1958.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds