metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m888-m889

Poly[[di­aqua-μ4-pyrazine-2,3-di­carboxyl­ato-κ6N,O2:O2′:O3,O3′:O3-strontium(II)] monohydrate]

aDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and bDepartment of Chemistry, Islamic Azad University, Shahr-e-Rey Branch, Tehran, Iran
*Correspondence e-mail: v_amani2002@yahoo.com

(Received 26 April 2008; accepted 21 May 2008; online 7 June 2008)

In the title compound, {[Sr(C6H2N2O4)(H2O)2]·H2O}n, the SrII ions are bridged by the pyrazine-2,3-dicarboxyl­ate ligands with the formation of two-dimensional polymeric layers parallel to the ac plane. Each SrII ion is eight-coordinated by one N and five O atoms from the four ligands and two water mol­ecules. The coordination polyhedron is derived from a penta­gonal bipyramid with an O atom at the apex on one side of the equatorial plane and two O atoms sharing the apical site on the other side. The coordinated and uncoordinated water mol­ecules are involved in O—H⋯O and O—H⋯N hydrogen bonds, which consolidate the crystal structure.

Related literature

For related literature, see: Takusagawa & Shimada (1973[Takusagawa, F. & Shimada, A. (1973). Chem. Lett. pp. 1121-1123.]); Richard et al. (1973[Richard, P., Tran Qui, D. & Bertaut, E. F. (1973). Acta Cryst. B29, 1111-1115.]); Zou et al. (1999[Zou, J. Z., Xu, Z., Chen, W., Lo, K. M. & You, X. Z. (1999). Polyhedron, 18, 1507-1512.]); Konar et al. (2004[Konar, S., Manna, S. C., Zangrando, E. & Chaudhuri, N. R. (2004). Inorg. Chim. Acta, 357, 1593-1597.]); Li et al. (2003[Li, J. M., Shi, J. M., Wu, C. J. & Xu, W. (2003). J. Coord. Chem. 56, 869-875.]); Xu et al. (2008[Xu, H., Ma, H., Xu, M., Zhao, W. & Guo, B. (2008). Acta Cryst. E64, m104.]); Ma et al. (2006[Ma, Y., He, Y.-K. & Han, Z.-B. (2006). Acta Cryst. E62, m2528-m2529.]); Ptasiewicz-Bak & Leciejewicz (1997a[Ptasiewicz-Bak, H. & Leciejewicz, J. (1997a). Pol. J. Chem. 71, 493-500.],b[Ptasiewicz-Bak, H. & Leciejewicz, J. (1997b). Pol. J. Chem. 71, 1603-1610.]); Starosta & Leciejewicz (2005[Starosta, W. & Leciejewicz, J. (2005). J. Coord. Chem. 58, 963-968.]); Tombul et al. (2006[Tombul, M., Güven, K. & Alkış, N. (2006). Acta Cryst. E62, m945-m947.]).

[Scheme 1]

Experimental

Crystal data
  • [Sr(C6H2N2O4)(H2O)2]·H2O

  • Mr = 307.76

  • Monoclinic, P 21 /n

  • a = 10.4931 (7) Å

  • b = 6.9839 (4) Å

  • c = 13.5208 (8) Å

  • β = 94.2670 (10)°

  • V = 988.10 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.48 mm−1

  • T = 120 (2) K

  • 0.28 × 0.25 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.240, Tmax = 0.568

  • 8338 measured reflections

  • 1934 independent reflections

  • 1595 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.054

  • S = 1.00

  • 1934 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Sr1—O2i 2.4887 (18)
Sr1—O2W 2.5106 (18)
Sr1—O4ii 2.5533 (18)
Sr1—O1W 2.5937 (19)
Sr1—O3 2.6145 (18)
Sr1—O1iii 2.6155 (18)
Sr1—N1 2.714 (2)
Sr1—O2iii 2.8517 (18)
Symmetry codes: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O3Wi 0.85 1.87 2.713 (3) 170
O1W—H2W1⋯O3Wiv 0.85 1.90 2.744 (3) 171
O2W—H1W2⋯O1ii 0.85 1.85 2.696 (3) 174
O2W—H2W2⋯O1Wv 0.85 2.01 2.857 (3) 178
O3W—H1W3⋯O4 0.85 1.94 2.781 (3) 170
O3W—H2W3⋯N2vi 0.85 1.96 2.792 (3) 168
Symmetry codes: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) -x-1, -y, -z+1; (vi) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Takusagawa & Shimada (1973) first determined the structure of pyrazine-2,3-dicarboxlic acid by single-crystal X-ray analysis. Almost at the same time, the first metal-organic compound of pyrazine-2,3-dicarboxylic acid was reported (Richard et al., 1973). Among many reported compounds containing pyrazine-2,3-dicarboxylic acid, most are complexes of transition metal ions, including manganese (Zou et al., 1999), copper (Konar et al., 2004), zinc (Li et al., 2003), iron (Xu et al., 2008) and cadmium (Ma et al., 2006). Also, there are many reported compounds of pyrazine-2,3-dicarboxylic acid with main group metals such as calcium (Ptasiewicz-Bak & Leciejewicz, 1997a; Starosta & Leciejewicz, 2005), magnesium (Ptasiewicz-Bak & Leciejewicz, 1997b) and sodium (Tombul et al., 2006) complexes. For further investigation of pyrazine-2,3-dicarboxylic acid, we synthesized the title compound, (I).

The asymmetric unit of the title compound, (Fig. 1), contains molecular sheets in which SrII ions are bridged by the carboxylate groups of the ligand molecules. Two bridging paths are evident. In the first, an N,O-bonding moiety formed by a hetero-ring nitrogen atom and the carboxylate oxygen atom nearest to it and both oxygen atoms of the second carboxylic group are active. The second path is formed by the other oxygen atom from the carboxylic group involved in the N,O-bonding moiety and an oxygen atom from the second carboxylic group. The latter atom is bidentate. A two-dimensional molecular pattern is formed. Each SrII ion is also coordinated by two water oxygen atoms, making the number of coordinated atoms eight. The coordination polyhedron is a distorted pentagonal bipyramid with an oxygen atom at the apex on one side of the equatorial plane and two oxygen atoms forming the apices on the other side. There is also one non-coordinated water molecule in the asymmetric unit. The Sr—O and Sr—N bond lengths are collected in Table 1.

Intermolecular O—H···O and O—H···N hydrogen bonds (Table 2) help to consolidate the crystal packing (Fig. 2).

Related literature top

For related literature, see: Takusagawa & Shimada (1973); Richard et al. (1973); Zou et al. (1999); Konar et al. (2004); Li et al. (2003); Xu et al. (2008); Ma et al. (2006); Ptasiewicz-Bak & Leciejewicz (1997a,b); Starosta & Leciejewicz (2005); Tombul et al. (2006).

Experimental top

A solution of pyrazine-2,3-dicarboxlic acid (0.5 g, 2.91 mmol) in methanol (40 ml) was added to a solution of Sr(NO3)2 (0.31 g, 1.46 mmol) in water (10 ml) and the resulting colourless solution was stirred for 10 min at room temperature. This solution was left to evaporate slowly at room temperature. After one week, colourless plate crystals of the title compound were isolated (yield 0.35 g, 78.03%).

Refinement top

C-bound H atoms were geometrically positioned (C-H 0.95 Å), while O-bound H atoms were found in difference Fourier maps, but placed in idealized positions with O-H of 0.85 Å. All hydrogen atoms were refined in riding model approximation with Uiso(H) = 1.2Ueq of the paren atom.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the polymeric structure of (I) with the atom-numbering scheme and displacement ellipsoids drawn at the 40% probability level [symmetry codes: (i) -x - 1/2,y - 1/2,-z + 1/2, (ii) -x - 1/2, y + 1/2,-z + 1/2, (iii) x - 1/2,-y + 1/2,z + 1/2].
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
Poly[[diaqua-µ4-pyrazine-2,3-dicarboxylato- κ6N,O2:O2':O3,O3':O3-strontium(II)] monohydrate] top
Crystal data top
[Sr(C6H2N2O4)(H2O)2]·H2OF(000) = 608
Mr = 307.76Dx = 2.069 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 156 reflections
a = 10.4931 (7) Åθ = 3–26°
b = 6.9839 (4) ŵ = 5.48 mm1
c = 13.5208 (8) ÅT = 120 K
β = 94.267 (1)°Plate, colorless
V = 988.10 (10) Å30.28 × 0.25 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1934 independent reflections
Radiation source: fine-focus sealed tube1595 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1212
Tmin = 0.240, Tmax = 0.568k = 88
8338 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: mixed
wR(F2) = 0.054H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.026P)2]
where P = (Fo2 + 2Fc2)/3
1934 reflections(Δ/σ)max = 0.002
145 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Sr(C6H2N2O4)(H2O)2]·H2OV = 988.10 (10) Å3
Mr = 307.76Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.4931 (7) ŵ = 5.48 mm1
b = 6.9839 (4) ÅT = 120 K
c = 13.5208 (8) Å0.28 × 0.25 × 0.10 mm
β = 94.267 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1934 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1595 reflections with I > 2σ(I)
Tmin = 0.240, Tmax = 0.568Rint = 0.040
8338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.01Δρmax = 0.92 e Å3
1934 reflectionsΔρmin = 0.45 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.44206 (2)0.17756 (3)0.375530 (17)0.01058 (9)
N10.4291 (2)0.1488 (3)0.17632 (16)0.0137 (5)
N20.3958 (2)0.2550 (3)0.01781 (16)0.0138 (5)
O10.14140 (18)0.1344 (3)0.07125 (13)0.0154 (4)
O20.09707 (18)0.3655 (3)0.03862 (13)0.0148 (4)
O30.21964 (18)0.1162 (3)0.30617 (13)0.0164 (4)
O40.10633 (16)0.0171 (3)0.18088 (13)0.0131 (4)
C10.3115 (2)0.1518 (4)0.14221 (19)0.0114 (6)
C20.2956 (3)0.2059 (4)0.04464 (19)0.0117 (6)
C30.5114 (3)0.2480 (4)0.0166 (2)0.0156 (6)
H3A0.58410.27940.02640.019*
C40.5277 (3)0.1963 (4)0.11335 (19)0.0150 (6)
H4A0.61150.19450.13560.018*
C50.2037 (3)0.0901 (4)0.21630 (19)0.0123 (6)
C60.1670 (3)0.2340 (4)0.00239 (19)0.0114 (6)
O1W0.64324 (17)0.0101 (3)0.30768 (13)0.0161 (4)
H1W10.63820.11060.27270.019*
H2W10.71740.03550.29320.019*
O2W0.31193 (17)0.2633 (3)0.53262 (13)0.0150 (4)
H1W20.32200.38020.54780.018*
H2W20.32460.18530.57910.018*
O3W0.11689 (17)0.1471 (3)0.28299 (13)0.0161 (4)
H1W30.04440.12030.25400.019*
H2W30.10110.17870.34150.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.00953 (13)0.01224 (14)0.01019 (13)0.00004 (11)0.00220 (9)0.00048 (11)
N10.0110 (12)0.0183 (13)0.0119 (11)0.0000 (10)0.0026 (9)0.0003 (10)
N20.0112 (12)0.0163 (12)0.0140 (11)0.0013 (9)0.0021 (9)0.0000 (10)
O10.0168 (10)0.0174 (10)0.0125 (9)0.0015 (8)0.0050 (8)0.0024 (8)
O20.0123 (10)0.0160 (11)0.0163 (10)0.0026 (8)0.0029 (8)0.0017 (8)
O30.0142 (10)0.0245 (11)0.0106 (9)0.0028 (8)0.0022 (8)0.0006 (8)
O40.0084 (9)0.0159 (10)0.0154 (9)0.0020 (8)0.0033 (8)0.0022 (8)
C10.0086 (13)0.0133 (14)0.0124 (13)0.0008 (11)0.0016 (10)0.0041 (11)
C20.0137 (14)0.0095 (13)0.0123 (13)0.0030 (11)0.0024 (11)0.0016 (11)
C30.0119 (15)0.0185 (14)0.0161 (14)0.0013 (11)0.0009 (11)0.0008 (12)
C40.0096 (14)0.0195 (15)0.0157 (14)0.0006 (11)0.0005 (11)0.0008 (12)
C50.0126 (14)0.0099 (13)0.0144 (14)0.0027 (11)0.0017 (11)0.0027 (11)
C60.0115 (14)0.0108 (13)0.0118 (13)0.0017 (11)0.0001 (11)0.0027 (11)
O1W0.0123 (10)0.0176 (10)0.0184 (10)0.0009 (8)0.0016 (8)0.0007 (8)
O2W0.0161 (10)0.0145 (10)0.0142 (10)0.0007 (8)0.0010 (8)0.0013 (8)
O3W0.0112 (10)0.0257 (11)0.0113 (9)0.0009 (8)0.0012 (8)0.0013 (8)
Geometric parameters (Å, º) top
Sr1—O2i2.4887 (18)O2—Sr1ii2.4887 (18)
Sr1—O2W2.5106 (18)O2—Sr1v2.8517 (18)
Sr1—O4ii2.5533 (18)O3—C51.252 (3)
Sr1—O1W2.5937 (19)O4—C51.267 (3)
Sr1—O32.6145 (18)O4—Sr1i2.5533 (18)
Sr1—O1iii2.6155 (18)C1—C21.394 (4)
Sr1—N12.714 (2)C1—C51.517 (4)
Sr1—O2iii2.8517 (18)C2—C61.516 (4)
Sr1—C6iii3.082 (3)C3—C41.381 (4)
Sr1—Sr1iv4.4235 (5)C3—H3A0.9500
Sr1—H1W22.9292C4—H4A0.9500
Sr1—H2W22.9320C6—Sr1v3.082 (3)
N1—C41.332 (3)O1W—H1W10.8500
N1—C11.349 (3)O1W—H2W10.8500
N2—C31.331 (3)O2W—H1W20.8500
N2—C21.343 (3)O2W—H2W20.8500
O1—C61.260 (3)O3W—H1W30.8501
O1—Sr1v2.6155 (18)O3W—H2W30.8499
O2—C61.252 (3)
O2i—Sr1—O2W75.75 (6)O2iii—Sr1—H1W270.9
O2i—Sr1—O4ii157.35 (6)C6iii—Sr1—H1W276.3
O2W—Sr1—O4ii85.61 (6)Sr1iv—Sr1—H1W278.0
O2i—Sr1—O1W79.88 (6)O2i—Sr1—H2W262.3
O2W—Sr1—O1W142.83 (6)O2W—Sr1—H2W215.6
O4ii—Sr1—O1W122.57 (6)O4ii—Sr1—H2W2100.6
O2i—Sr1—O384.44 (6)O1W—Sr1—H2W2128.0
O2W—Sr1—O384.19 (6)O3—Sr1—H2W290.9
O4ii—Sr1—O380.93 (6)O1iii—Sr1—H2W291.2
O1W—Sr1—O3121.00 (6)N1—Sr1—H2W2152.2
O2i—Sr1—O1iii114.76 (6)O2iii—Sr1—H2W260.0
O2W—Sr1—O1iii92.48 (6)C6iii—Sr1—H2W276.1
O4ii—Sr1—O1iii78.28 (6)Sr1iv—Sr1—H2W254.3
O1W—Sr1—O1iii72.81 (6)H1W2—Sr1—H2W228.2
O3—Sr1—O1iii159.14 (6)C4—N1—C1117.7 (2)
O2i—Sr1—N1112.29 (6)C4—N1—Sr1121.46 (17)
O2W—Sr1—N1142.46 (6)C1—N1—Sr1116.91 (16)
O4ii—Sr1—N175.33 (6)C3—N2—C2117.5 (2)
O1W—Sr1—N173.21 (6)C6—O1—Sr1v99.33 (16)
O3—Sr1—N161.32 (6)C6—O2—Sr1ii153.65 (17)
O1iii—Sr1—N1114.22 (6)C6—O2—Sr1v88.36 (15)
O2i—Sr1—O2iii68.33 (6)Sr1ii—O2—Sr1v111.67 (6)
O2W—Sr1—O2iii71.13 (6)C5—O3—Sr1124.02 (17)
O4ii—Sr1—O2iii117.81 (5)C5—O4—Sr1i132.10 (16)
O1W—Sr1—O2iii73.99 (5)N1—C1—C2120.3 (2)
O3—Sr1—O2iii146.69 (6)N1—C1—C5115.2 (2)
O1iii—Sr1—O2iii47.66 (5)C2—C1—C5124.4 (2)
N1—Sr1—O2iii146.41 (6)N2—C2—C1121.3 (2)
O2i—Sr1—C6iii91.29 (7)N2—C2—C6114.0 (2)
O2W—Sr1—C6iii82.66 (6)C1—C2—C6124.4 (2)
O4ii—Sr1—C6iii99.08 (6)N2—C3—C4121.4 (3)
O1W—Sr1—C6iii70.19 (6)N2—C3—H3A119.3
O3—Sr1—C6iii166.80 (6)C4—C3—H3A119.3
O1iii—Sr1—C6iii23.79 (6)N1—C4—C3121.7 (3)
N1—Sr1—C6iii131.61 (7)N1—C4—H4A119.1
O2iii—Sr1—C6iii23.97 (6)C3—C4—H4A119.1
O2i—Sr1—Sr1iv36.81 (4)O3—C5—O4126.5 (2)
O2W—Sr1—Sr1iv69.70 (4)O3—C5—C1116.9 (2)
O4ii—Sr1—Sr1iv145.08 (4)O4—C5—C1116.6 (2)
O1W—Sr1—Sr1iv73.93 (4)O2—C6—O1124.1 (2)
O3—Sr1—Sr1iv118.96 (4)O2—C6—C2117.4 (2)
O1iii—Sr1—Sr1iv78.55 (4)O1—C6—C2118.3 (2)
N1—Sr1—Sr1iv138.62 (5)O2—C6—Sr1v67.67 (14)
O2iii—Sr1—Sr1iv31.52 (4)O1—C6—Sr1v56.88 (13)
C6iii—Sr1—Sr1iv54.80 (5)C2—C6—Sr1v167.25 (17)
O2i—Sr1—H1W290.3Sr1—O1W—H1W1122.1
O2W—Sr1—H1W215.7Sr1—O1W—H2W1126.8
O4ii—Sr1—H1W272.9H1W1—O1W—H2W1105.9
O1W—Sr1—H1W2144.7Sr1—O2W—H1W2111.4
O3—Sr1—H1W291.3Sr1—O2W—H2W2111.6
O1iii—Sr1—H1W281.0H1W2—O2W—H2W2114.0
N1—Sr1—H1W2140.8H1W3—O3W—H2W3104.9
O2i—Sr1—N1—C4121.4 (2)C3—N2—C2—C10.7 (4)
O2W—Sr1—N1—C4143.01 (19)C3—N2—C2—C6175.0 (2)
O4ii—Sr1—N1—C481.1 (2)N1—C1—C2—N20.4 (4)
O1W—Sr1—N1—C450.2 (2)C5—C1—C2—N2178.5 (2)
O3—Sr1—N1—C4168.7 (2)N1—C1—C2—C6173.3 (2)
O1iii—Sr1—N1—C411.5 (2)C5—C1—C2—C67.8 (4)
O2iii—Sr1—N1—C437.4 (3)C2—N2—C3—C41.3 (4)
C6iii—Sr1—N1—C48.1 (2)C1—N1—C4—C30.3 (4)
Sr1iv—Sr1—N1—C489.0 (2)Sr1—N1—C4—C3156.5 (2)
O2i—Sr1—N1—C181.51 (18)N2—C3—C4—N10.8 (4)
O2W—Sr1—N1—C114.0 (2)Sr1—O3—C5—O4162.37 (19)
O4ii—Sr1—N1—C175.96 (18)Sr1—O3—C5—C117.6 (3)
O1W—Sr1—N1—C1152.72 (19)Sr1i—O4—C5—O396.7 (3)
O3—Sr1—N1—C111.61 (17)Sr1i—O4—C5—C183.2 (3)
O1iii—Sr1—N1—C1145.59 (17)N1—C1—C5—O327.8 (3)
O2iii—Sr1—N1—C1165.53 (15)C2—C1—C5—O3153.3 (3)
C6iii—Sr1—N1—C1165.13 (16)N1—C1—C5—O4152.2 (2)
Sr1iv—Sr1—N1—C1113.97 (17)C2—C1—C5—O426.8 (4)
O2i—Sr1—O3—C5115.1 (2)Sr1ii—O2—C6—O1148.1 (3)
O2W—Sr1—O3—C5168.7 (2)Sr1v—O2—C6—O17.3 (3)
O4ii—Sr1—O3—C582.2 (2)Sr1ii—O2—C6—C226.3 (5)
O1W—Sr1—O3—C540.4 (2)Sr1v—O2—C6—C2167.1 (2)
O1iii—Sr1—O3—C587.1 (3)Sr1ii—O2—C6—Sr1v140.8 (4)
N1—Sr1—O3—C54.08 (19)Sr1v—O1—C6—O28.1 (3)
O2iii—Sr1—O3—C5149.62 (18)Sr1v—O1—C6—C2166.25 (19)
C6iii—Sr1—O3—C5173.4 (3)N2—C2—C6—O2110.2 (3)
Sr1iv—Sr1—O3—C5128.36 (19)C1—C2—C6—O263.9 (4)
C4—N1—C1—C20.9 (4)N2—C2—C6—O164.5 (3)
Sr1—N1—C1—C2157.03 (19)C1—C2—C6—O1121.4 (3)
C4—N1—C1—C5178.1 (2)N2—C2—C6—Sr1v0.2 (9)
Sr1—N1—C1—C524.0 (3)C1—C2—C6—Sr1v174.3 (7)
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2; (iv) x1, y, z+1; (v) x+1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3Wi0.851.872.713 (3)170
O1W—H2W1···O3Wvi0.851.902.744 (3)171
O2W—H1W2···O1ii0.851.852.696 (3)174
O2W—H2W2···O1Wiv0.852.012.857 (3)178
O3W—H1W3···O40.851.942.781 (3)170
O3W—H2W3···N2vii0.851.962.792 (3)168
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iv) x1, y, z+1; (vi) x1, y, z; (vii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Sr(C6H2N2O4)(H2O)2]·H2O
Mr307.76
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)10.4931 (7), 6.9839 (4), 13.5208 (8)
β (°) 94.267 (1)
V3)988.10 (10)
Z4
Radiation typeMo Kα
µ (mm1)5.48
Crystal size (mm)0.28 × 0.25 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.240, 0.568
No. of measured, independent and
observed [I > 2σ(I)] reflections
8338, 1934, 1595
Rint0.040
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.054, 1.01
No. of reflections1934
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.45

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Sr1—O2i2.4887 (18)Sr1—O32.6145 (18)
Sr1—O2W2.5106 (18)Sr1—O1iii2.6155 (18)
Sr1—O4ii2.5533 (18)Sr1—N12.714 (2)
Sr1—O1W2.5937 (19)Sr1—O2iii2.8517 (18)
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iii) x1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3Wi0.851.8722.713 (3)170
O1W—H2W1···O3Wiv0.851.9012.744 (3)171
O2W—H1W2···O1ii0.851.8492.696 (3)174
O2W—H2W2···O1Wv0.852.0072.857 (3)178
O3W—H1W3···O40.851.9412.781 (3)170
O3W—H2W3···N2vi0.851.9552.792 (3)168
Symmetry codes: (i) x1/2, y1/2, z+1/2; (ii) x1/2, y+1/2, z+1/2; (iv) x1, y, z; (v) x1, y, z+1; (vi) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.

References

First citationBruker (1998). SAINT-Plus, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKonar, S., Manna, S. C., Zangrando, E. & Chaudhuri, N. R. (2004). Inorg. Chim. Acta, 357, 1593–1597.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, J. M., Shi, J. M., Wu, C. J. & Xu, W. (2003). J. Coord. Chem. 56, 869–875.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Y., He, Y.-K. & Han, Z.-B. (2006). Acta Cryst. E62, m2528–m2529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPtasiewicz-Bak, H. & Leciejewicz, J. (1997a). Pol. J. Chem. 71, 493–500.  CAS Google Scholar
First citationPtasiewicz-Bak, H. & Leciejewicz, J. (1997b). Pol. J. Chem. 71, 1603–1610.  CAS Google Scholar
First citationRichard, P., Tran Qui, D. & Bertaut, E. F. (1973). Acta Cryst. B29, 1111–1115.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2005). J. Coord. Chem. 58, 963–968.  Web of Science CSD CrossRef CAS Google Scholar
First citationTakusagawa, F. & Shimada, A. (1973). Chem. Lett. pp. 1121–1123.  CrossRef Web of Science Google Scholar
First citationTombul, M., Güven, K. & Alkış, N. (2006). Acta Cryst. E62, m945–m947.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, H., Ma, H., Xu, M., Zhao, W. & Guo, B. (2008). Acta Cryst. E64, m104.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZou, J. Z., Xu, Z., Chen, W., Lo, K. M. & You, X. Z. (1999). Polyhedron, 18, 1507–1512.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m888-m889
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds