Download citation
Download citation
link to html
In the title complex, [Ni(C17H12N3O2)2], the NiII ion is coordinated by two O [Ni—O = 2.066 (3) and 2.068 (3) Å] and four N [Ni—N = 1.982 (3)–2.120 (3)Å] atoms in a distorted octa­hedral geometry. Two intra­molecular O—H...N hydrogen bonds contribute to the mol­ecular conformation. Weak inter­molecular C—H...O hydrogen bonds stabilize the crystal packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807047770/cv2309sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807047770/cv2309Isup2.hkl
Contains datablock I

CCDC reference: 658541

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.047
  • wR factor = 0.148
  • Data-to-parameter ratio = 12.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.69 mm PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 300 Ang. PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 3 N5 -NI1 -N2 -C12 142.00 2.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 8 N5 -NI1 -N2 -N1 -35.00 2.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 25 N2 -NI1 -N5 -C29 139.00 2.00 1.555 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 30 N2 -NI1 -N5 -N4 -40.00 2.00 1.555 1.555 1.555 1.555
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (2) 2.23
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The chemistry of aroylhydrazones is widely studied due to their coordination abilities to metal ions (Beghidja et al., 2006) and their biological activities (Mostafa & Haifaa, 2007). Our group have reported the crystal structures of two aroylhydrazone complexes - [Cu(C12H12N2O3)(C5H5N)] (Liu et al., 2005a) and [Ni(C18H12N2O3)(C5H5N)] (Liu et al., 2005b). As an extension of our work on the structural characterization of aroylhydrazone derivatives, the title complex, (I), was synthesized and characterized.

In (I) (Fig. 1), the Ni ion is six-coordinated by four N atoms and two O atoms in a distorted octahedron geometry. Each ligand coordinate the Ni ion in a tridentate mode via N atom of the azomethine group, O atom of the the hydroxyl group and N atom of the pyridine ring. Each ligand forms two five-membered chelate rings Ni—N—N—C—O and Ni—N—C—C—N with the nickel atom. The atoms N3, N6, O3 and O1 constitute the equatorial plane, with the mean deviation from plane of 0.43 (6) Å. The angles O1—Ni1—N3 and O3—Ni1—N6 are 155.95 (12) and 155.93 (13)°, respectively. The axial positions are occupied by the atoms N5 and N2. The angle of N5—Ni1—N2 is 176.33 (14)°. There are two intramolecular O2—H2···N1 and O4—H4···N4 hydrogen bonds (Table 1 and Fig. 1).

In the crystal, the weak intermolecular C—H···O hydrogen bonds (Table 1) contribute to the crystal packing stabilization.

Related literature top

For related crystal structures of Cu and Ni complexes with aroylhydrazone derivatives, see Liu et al. (2005a,b). For general background, see Beghidja et al. (2006), and for the specific biological activities of aroylhydrazones, see Mostafa & Haifaa (2007).

Experimental top

A dimethylformamide solution (10 ml) of H2L (0.073 g, 0.25 mmol) and KOH (0.014 g, 0.25 mmol) was mixed with a pyridine solution (10 ml) of Ni(OAC)24H2O (0.062 g, 0.25 mmol). The mixture was stirred for 4 h, filtered, and was left to stand. Two weeks later, red crystals were isolated from the solution (m.p. >573 K). Analysis, calculated for C34H24N6NiO4: C 63.88, H 3.78, N 13.15%; found: C 63.76, H 3.80, N 13.01%.

Refinement top

All H atoms were placed in geometrically idealized positions (O—H 0.82 and C—H 0.93 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Structure description top

The chemistry of aroylhydrazones is widely studied due to their coordination abilities to metal ions (Beghidja et al., 2006) and their biological activities (Mostafa & Haifaa, 2007). Our group have reported the crystal structures of two aroylhydrazone complexes - [Cu(C12H12N2O3)(C5H5N)] (Liu et al., 2005a) and [Ni(C18H12N2O3)(C5H5N)] (Liu et al., 2005b). As an extension of our work on the structural characterization of aroylhydrazone derivatives, the title complex, (I), was synthesized and characterized.

In (I) (Fig. 1), the Ni ion is six-coordinated by four N atoms and two O atoms in a distorted octahedron geometry. Each ligand coordinate the Ni ion in a tridentate mode via N atom of the azomethine group, O atom of the the hydroxyl group and N atom of the pyridine ring. Each ligand forms two five-membered chelate rings Ni—N—N—C—O and Ni—N—C—C—N with the nickel atom. The atoms N3, N6, O3 and O1 constitute the equatorial plane, with the mean deviation from plane of 0.43 (6) Å. The angles O1—Ni1—N3 and O3—Ni1—N6 are 155.95 (12) and 155.93 (13)°, respectively. The axial positions are occupied by the atoms N5 and N2. The angle of N5—Ni1—N2 is 176.33 (14)°. There are two intramolecular O2—H2···N1 and O4—H4···N4 hydrogen bonds (Table 1 and Fig. 1).

In the crystal, the weak intermolecular C—H···O hydrogen bonds (Table 1) contribute to the crystal packing stabilization.

For related crystal structures of Cu and Ni complexes with aroylhydrazone derivatives, see Liu et al. (2005a,b). For general background, see Beghidja et al. (2006), and for the specific biological activities of aroylhydrazones, see Mostafa & Haifaa (2007).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. The dashed lines denote hydrogen bonds. C-bound H atoms have been omitted for clarity.
Bis[(3-hydroxy-2-naphthyl)(2-pyridylmethylenehydrazono)methanolato]nickel(II) top
Crystal data top
[Ni(C17H12N3O2)2]F(000) = 1320
Mr = 639.30Dx = 1.437 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 21.257 (3) ÅCell parameters from 3186 reflections
b = 11.653 (3) Åθ = 2.4–22.9°
c = 11.938 (3) ŵ = 0.71 mm1
β = 91.686 (3)°T = 293 K
V = 2955.6 (10) Å3Plate, red
Z = 40.69 × 0.66 × 0.13 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
5202 independent reflections
Radiation source: fine-focus sealed tube3068 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2523
Tmin = 0.641, Tmax = 0.914k = 139
14859 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.6517P]
where P = (Fo2 + 2Fc2)/3
5202 reflections(Δ/σ)max = 0.001
408 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Ni(C17H12N3O2)2]V = 2955.6 (10) Å3
Mr = 639.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.257 (3) ŵ = 0.71 mm1
b = 11.653 (3) ÅT = 293 K
c = 11.938 (3) Å0.69 × 0.66 × 0.13 mm
β = 91.686 (3)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5202 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3068 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 0.914Rint = 0.089
14859 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.01Δρmax = 0.34 e Å3
5202 reflectionsΔρmin = 0.45 e Å3
408 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.24926 (2)0.45673 (5)1.00715 (4)0.03962 (19)
N10.31082 (16)0.5566 (3)0.8193 (3)0.0468 (9)
N20.26876 (15)0.5813 (3)0.9004 (3)0.0433 (8)
N30.18729 (15)0.5883 (3)1.0576 (3)0.0405 (8)
N40.19264 (15)0.2411 (3)1.0620 (3)0.0444 (9)
N50.23030 (15)0.3252 (3)1.1058 (3)0.0428 (8)
N60.30319 (16)0.4982 (3)1.1532 (3)0.0480 (9)
O10.31986 (13)0.3844 (3)0.9151 (2)0.0511 (8)
O20.37269 (18)0.5822 (3)0.6396 (3)0.0745 (10)
H20.34650.59730.68650.112*
O30.18427 (12)0.3650 (2)0.9110 (2)0.0435 (7)
O40.12798 (17)0.0556 (2)1.0564 (3)0.0663 (9)
H40.15370.10291.08000.099*
C10.33299 (18)0.4505 (4)0.8363 (3)0.0413 (10)
C20.4035 (2)0.3014 (4)0.7651 (3)0.0512 (12)
H2A0.39240.25820.82710.061*
C30.37842 (18)0.4088 (4)0.7523 (3)0.0436 (10)
C40.3953 (2)0.4740 (4)0.6578 (3)0.0541 (12)
C50.4366 (2)0.4292 (5)0.5824 (4)0.0639 (14)
H50.44800.47350.52150.077*
C60.4619 (2)0.3181 (5)0.5953 (4)0.0575 (13)
C70.44529 (19)0.2531 (4)0.6885 (4)0.0533 (12)
C80.4700 (2)0.1419 (5)0.7015 (4)0.0710 (15)
H80.45930.09840.76340.085*
C90.5087 (3)0.0976 (6)0.6261 (5)0.0848 (18)
H90.52410.02350.63530.102*
C100.5258 (2)0.1631 (6)0.5335 (5)0.0867 (19)
H100.55330.13240.48210.104*
C110.5032 (2)0.2693 (6)0.5180 (4)0.0785 (17)
H110.51480.31140.45570.094*
C120.2399 (2)0.6765 (4)0.9079 (4)0.0521 (12)
H120.24620.73620.85770.063*
C130.19617 (19)0.6866 (4)1.0007 (3)0.0469 (11)
C140.1689 (2)0.7886 (4)1.0314 (4)0.0656 (14)
H140.17600.85530.99090.079*
C150.1311 (2)0.7901 (4)1.1229 (4)0.0689 (14)
H150.11260.85811.14570.083*
C160.1211 (2)0.6909 (4)1.1798 (4)0.0604 (13)
H160.09540.69031.24160.072*
C170.14953 (19)0.5914 (4)1.1450 (3)0.0508 (11)
H170.14210.52381.18390.061*
C180.17036 (18)0.2725 (4)0.9597 (3)0.0388 (10)
C190.10074 (18)0.2221 (3)0.8001 (3)0.0417 (10)
H190.11550.28780.76540.050*
C200.12551 (18)0.1931 (3)0.9040 (3)0.0381 (10)
C210.1047 (2)0.0897 (4)0.9549 (4)0.0485 (11)
C220.0590 (2)0.0251 (4)0.9018 (4)0.0555 (12)
H220.04560.04220.93540.067*
C230.0318 (2)0.0575 (4)0.7981 (4)0.0479 (11)
C240.05415 (19)0.1566 (3)0.7443 (3)0.0434 (10)
C250.0279 (2)0.1874 (4)0.6383 (4)0.0554 (12)
H250.04280.25190.60170.066*
C260.0189 (2)0.1237 (5)0.5895 (4)0.0650 (14)
H260.03570.14420.51950.078*
C270.0418 (2)0.0276 (5)0.6446 (5)0.0732 (15)
H270.07460.01420.61160.088*
C280.0173 (2)0.0059 (4)0.7443 (5)0.0649 (14)
H280.03270.07150.77840.078*
C290.25446 (19)0.3233 (4)1.2053 (3)0.0503 (12)
H290.24910.26171.25360.060*
C300.2909 (2)0.4242 (4)1.2374 (3)0.0514 (12)
C310.3103 (2)0.4486 (5)1.3469 (4)0.0744 (16)
H310.30170.39791.40460.089*
C320.3428 (3)0.5496 (6)1.3691 (5)0.090 (2)
H320.35540.56801.44220.108*
C330.3562 (3)0.6220 (5)1.2828 (5)0.0805 (17)
H330.37880.68931.29590.097*
C340.3356 (2)0.5933 (5)1.1769 (4)0.0618 (13)
H340.34480.64271.11840.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0449 (3)0.0372 (3)0.0370 (3)0.0009 (3)0.0062 (2)0.0018 (2)
N10.052 (2)0.046 (2)0.043 (2)0.0032 (19)0.0177 (17)0.0012 (17)
N20.047 (2)0.042 (2)0.0417 (19)0.0034 (19)0.0059 (16)0.0001 (17)
N30.0388 (18)0.039 (2)0.0438 (19)0.0003 (18)0.0075 (15)0.0060 (17)
N40.049 (2)0.038 (2)0.047 (2)0.0005 (19)0.0070 (16)0.0088 (17)
N50.045 (2)0.045 (2)0.039 (2)0.0068 (19)0.0072 (16)0.0055 (17)
N60.046 (2)0.056 (2)0.042 (2)0.004 (2)0.0039 (16)0.0093 (19)
O10.0570 (18)0.0515 (19)0.0453 (16)0.0092 (16)0.0111 (14)0.0083 (15)
O20.101 (3)0.071 (2)0.054 (2)0.018 (2)0.0344 (18)0.0169 (18)
O30.0544 (17)0.0339 (16)0.0422 (16)0.0044 (15)0.0016 (13)0.0072 (13)
O40.102 (3)0.0379 (19)0.059 (2)0.0121 (19)0.0050 (18)0.0136 (16)
C10.041 (2)0.045 (3)0.039 (2)0.001 (2)0.0021 (18)0.002 (2)
C20.051 (3)0.055 (3)0.047 (3)0.001 (3)0.005 (2)0.003 (2)
C30.041 (2)0.054 (3)0.036 (2)0.002 (2)0.0038 (18)0.004 (2)
C40.061 (3)0.061 (3)0.041 (2)0.007 (3)0.011 (2)0.003 (2)
C50.071 (3)0.081 (4)0.041 (3)0.002 (3)0.018 (2)0.002 (3)
C60.046 (3)0.081 (4)0.046 (3)0.006 (3)0.006 (2)0.011 (3)
C70.041 (3)0.068 (3)0.051 (3)0.007 (3)0.002 (2)0.010 (3)
C80.072 (3)0.074 (4)0.068 (3)0.023 (3)0.003 (3)0.009 (3)
C90.074 (4)0.090 (5)0.090 (4)0.031 (4)0.001 (3)0.022 (4)
C100.063 (3)0.119 (6)0.079 (4)0.028 (4)0.010 (3)0.035 (4)
C110.066 (3)0.111 (5)0.060 (3)0.015 (4)0.019 (3)0.014 (3)
C120.061 (3)0.039 (3)0.058 (3)0.002 (3)0.019 (2)0.011 (2)
C130.047 (3)0.042 (3)0.052 (3)0.006 (2)0.009 (2)0.002 (2)
C140.082 (4)0.037 (3)0.079 (3)0.008 (3)0.028 (3)0.008 (3)
C150.079 (3)0.048 (3)0.081 (4)0.018 (3)0.028 (3)0.005 (3)
C160.063 (3)0.060 (3)0.060 (3)0.009 (3)0.022 (2)0.002 (3)
C170.054 (3)0.044 (3)0.055 (3)0.004 (2)0.015 (2)0.002 (2)
C180.044 (2)0.033 (2)0.040 (2)0.009 (2)0.0140 (19)0.004 (2)
C190.044 (2)0.030 (2)0.052 (3)0.002 (2)0.015 (2)0.002 (2)
C200.043 (2)0.026 (2)0.046 (2)0.000 (2)0.0141 (19)0.0025 (19)
C210.065 (3)0.028 (2)0.052 (3)0.000 (2)0.019 (2)0.004 (2)
C220.067 (3)0.029 (3)0.072 (3)0.015 (2)0.025 (3)0.001 (2)
C230.049 (3)0.034 (3)0.061 (3)0.003 (2)0.020 (2)0.012 (2)
C240.043 (2)0.033 (2)0.055 (3)0.000 (2)0.012 (2)0.010 (2)
C250.054 (3)0.048 (3)0.065 (3)0.006 (3)0.004 (2)0.005 (2)
C260.063 (3)0.064 (4)0.067 (3)0.002 (3)0.007 (3)0.012 (3)
C270.060 (3)0.068 (4)0.092 (4)0.015 (3)0.007 (3)0.026 (3)
C280.065 (3)0.046 (3)0.085 (4)0.016 (3)0.020 (3)0.012 (3)
C290.054 (3)0.054 (3)0.043 (3)0.010 (3)0.008 (2)0.012 (2)
C300.050 (3)0.065 (3)0.039 (2)0.014 (3)0.003 (2)0.003 (2)
C310.085 (4)0.095 (5)0.042 (3)0.018 (4)0.010 (2)0.000 (3)
C320.096 (4)0.108 (5)0.064 (4)0.028 (4)0.033 (3)0.029 (4)
C330.085 (4)0.077 (4)0.078 (4)0.009 (3)0.022 (3)0.026 (3)
C340.058 (3)0.063 (3)0.064 (3)0.001 (3)0.003 (2)0.012 (3)
Geometric parameters (Å, º) top
Ni1—N51.982 (3)C11—H110.9300
Ni1—N21.983 (3)C12—C131.472 (5)
Ni1—O12.066 (3)C12—H120.9300
Ni1—O32.068 (3)C13—C141.376 (6)
Ni1—N62.114 (3)C14—C151.376 (6)
Ni1—N32.120 (3)C14—H140.9300
N1—C11.336 (5)C15—C161.360 (6)
N1—N21.368 (4)C15—H150.9300
N2—C121.272 (5)C16—C171.377 (6)
N3—C171.336 (5)C16—H160.9300
N3—C131.347 (5)C17—H170.9300
N4—C181.349 (5)C18—C201.473 (5)
N4—N51.360 (4)C19—C201.375 (5)
N5—C291.280 (5)C19—C241.403 (5)
N6—C341.331 (6)C19—H190.9300
N6—C301.355 (5)C20—C211.426 (5)
O1—C11.254 (5)C21—C221.370 (6)
O2—C41.364 (5)C22—C231.401 (6)
O2—H20.8200C22—H220.9300
O3—C181.263 (4)C23—C241.410 (6)
O4—C211.354 (5)C23—C281.417 (6)
O4—H40.8200C24—C251.413 (6)
C1—C31.494 (5)C25—C261.360 (6)
C2—C31.367 (6)C25—H250.9300
C2—C71.411 (6)C26—C271.392 (7)
C2—H2A0.9300C26—H260.9300
C3—C41.415 (6)C27—C281.343 (7)
C4—C51.378 (6)C27—H270.9300
C5—C61.409 (6)C28—H280.9300
C5—H50.9300C29—C301.454 (6)
C6—C71.399 (6)C29—H290.9300
C6—C111.412 (6)C30—C311.389 (6)
C7—C81.405 (6)C31—C321.385 (7)
C8—C91.340 (7)C31—H310.9300
C8—H80.9300C32—C331.368 (8)
C9—C101.401 (8)C32—H320.9300
C9—H90.9300C33—C341.367 (6)
C10—C111.339 (7)C33—H330.9300
C10—H100.9300C34—H340.9300
N5—Ni1—N2176.33 (14)C13—C12—H12122.0
N5—Ni1—O199.45 (12)N3—C13—C14122.3 (4)
N2—Ni1—O177.76 (13)N3—C13—C12114.3 (4)
N5—Ni1—O377.62 (13)C14—C13—C12123.3 (4)
N2—Ni1—O399.83 (12)C13—C14—C15118.8 (4)
O1—Ni1—O388.73 (11)C13—C14—H14120.6
N5—Ni1—N678.55 (15)C15—C14—H14120.6
N2—Ni1—N6104.12 (14)C16—C15—C14119.3 (5)
O1—Ni1—N698.46 (12)C16—C15—H15120.4
O3—Ni1—N6155.94 (13)C14—C15—H15120.4
N5—Ni1—N3104.59 (13)C15—C16—C17119.2 (4)
N2—Ni1—N378.25 (13)C15—C16—H16120.4
O1—Ni1—N3155.95 (12)C17—C16—H16120.4
O3—Ni1—N396.94 (12)N3—C17—C16122.5 (4)
N6—Ni1—N385.81 (13)N3—C17—H17118.7
C1—N1—N2108.8 (3)C16—C17—H17118.7
C12—N2—N1124.0 (4)O3—C18—N4124.6 (4)
C12—N2—Ni1118.9 (3)O3—C18—C20119.1 (4)
N1—N2—Ni1117.0 (3)N4—C18—C20116.3 (4)
C17—N3—C13117.8 (4)C20—C19—C24122.8 (4)
C17—N3—Ni1129.3 (3)C20—C19—H19118.6
C13—N3—Ni1112.0 (2)C24—C19—H19118.6
C18—N4—N5109.8 (3)C19—C20—C21118.4 (4)
C29—N5—N4124.0 (4)C19—C20—C18118.6 (4)
C29—N5—Ni1118.8 (3)C21—C20—C18122.9 (4)
N4—N5—Ni1117.2 (2)O4—C21—C22119.3 (4)
C34—N6—C30118.8 (4)O4—C21—C20121.3 (4)
C34—N6—Ni1129.1 (3)C22—C21—C20119.4 (4)
C30—N6—Ni1110.8 (3)C21—C22—C23121.9 (4)
C1—O1—Ni1109.2 (3)C21—C22—H22119.0
C4—O2—H2109.5C23—C22—H22119.0
C18—O3—Ni1110.3 (2)C22—C23—C24119.2 (4)
C21—O4—H4109.5C22—C23—C28122.6 (4)
O1—C1—N1126.7 (4)C24—C23—C28118.2 (4)
O1—C1—C3117.8 (4)C19—C24—C23118.1 (4)
N1—C1—C3115.6 (4)C19—C24—C25122.8 (4)
C3—C2—C7122.8 (4)C23—C24—C25119.1 (4)
C3—C2—H2A118.6C26—C25—C24120.6 (5)
C7—C2—H2A118.6C26—C25—H25119.7
C2—C3—C4118.3 (4)C24—C25—H25119.7
C2—C3—C1118.7 (4)C25—C26—C27119.9 (5)
C4—C3—C1123.0 (4)C25—C26—H26120.1
O2—C4—C5118.3 (4)C27—C26—H26120.1
O2—C4—C3121.8 (4)C28—C27—C26121.4 (5)
C5—C4—C3120.0 (5)C28—C27—H27119.3
C4—C5—C6121.7 (4)C26—C27—H27119.3
C4—C5—H5119.2C27—C28—C23120.8 (5)
C6—C5—H5119.2C27—C28—H28119.6
C7—C6—C5118.7 (4)C23—C28—H28119.6
C7—C6—C11118.6 (5)N5—C29—C30115.3 (4)
C5—C6—C11122.8 (5)N5—C29—H29122.3
C6—C7—C8119.0 (4)C30—C29—H29122.3
C6—C7—C2118.6 (4)N6—C30—C31120.7 (5)
C8—C7—C2122.4 (5)N6—C30—C29115.6 (4)
C9—C8—C7121.0 (5)C31—C30—C29123.7 (5)
C9—C8—H8119.5C32—C31—C30119.1 (5)
C7—C8—H8119.5C32—C31—H31120.5
C8—C9—C10120.0 (6)C30—C31—H31120.5
C8—C9—H9120.0C33—C32—C31119.6 (5)
C10—C9—H9120.0C33—C32—H32120.2
C11—C10—C9120.7 (5)C31—C32—H32120.2
C11—C10—H10119.6C34—C33—C32118.5 (6)
C9—C10—H10119.6C34—C33—H33120.8
C10—C11—C6120.7 (5)C32—C33—H33120.8
C10—C11—H11119.7N6—C34—C33123.4 (5)
C6—C11—H11119.7N6—C34—H34118.3
N2—C12—C13116.1 (4)C33—C34—H34118.3
N2—C12—H12122.0
C1—N1—N2—C12179.2 (4)C11—C6—C7—C80.3 (7)
C1—N1—N2—Ni14.0 (4)C5—C6—C7—C20.6 (6)
N5—Ni1—N2—C12142 (2)C11—C6—C7—C2179.3 (4)
O1—Ni1—N2—C12177.3 (4)C3—C2—C7—C60.0 (6)
O3—Ni1—N2—C1296.1 (3)C3—C2—C7—C8179.0 (4)
N6—Ni1—N2—C1281.6 (3)C6—C7—C8—C90.3 (7)
N3—Ni1—N2—C121.0 (3)C2—C7—C8—C9178.7 (5)
N5—Ni1—N2—N135 (2)C7—C8—C9—C101.0 (8)
O1—Ni1—N2—N15.7 (3)C8—C9—C10—C111.1 (9)
O3—Ni1—N2—N180.9 (3)C9—C10—C11—C60.5 (8)
N6—Ni1—N2—N1101.4 (3)C7—C6—C11—C100.2 (7)
N3—Ni1—N2—N1176.0 (3)C5—C6—C11—C10179.7 (5)
N5—Ni1—N3—C178.4 (4)N1—N2—C12—C13179.6 (3)
N2—Ni1—N3—C17174.0 (4)Ni1—N2—C12—C132.9 (5)
O1—Ni1—N3—C17170.1 (3)C17—N3—C13—C141.4 (6)
O3—Ni1—N3—C1787.3 (4)Ni1—N3—C13—C14169.1 (4)
N6—Ni1—N3—C1768.7 (4)C17—N3—C13—C12178.2 (4)
N5—Ni1—N3—C13177.5 (3)Ni1—N3—C13—C127.7 (4)
N2—Ni1—N3—C134.9 (3)N2—C12—C13—N37.3 (6)
O1—Ni1—N3—C131.0 (5)N2—C12—C13—C14169.5 (4)
O3—Ni1—N3—C13103.6 (3)N3—C13—C14—C150.3 (7)
N6—Ni1—N3—C13100.4 (3)C12—C13—C14—C15176.8 (4)
C18—N4—N5—C29174.7 (4)C13—C14—C15—C160.7 (8)
C18—N4—N5—Ni16.3 (4)C14—C15—C16—C170.5 (8)
N2—Ni1—N5—C29139 (2)C13—N3—C17—C161.6 (6)
O1—Ni1—N5—C2998.6 (3)Ni1—N3—C17—C16167.0 (3)
O3—Ni1—N5—C29174.8 (3)C15—C16—C17—N30.7 (7)
N6—Ni1—N5—C291.8 (3)Ni1—O3—C18—N42.8 (5)
N3—Ni1—N5—C2980.7 (3)Ni1—O3—C18—C20178.8 (2)
N2—Ni1—N5—N440 (2)N5—N4—C18—O32.0 (5)
O1—Ni1—N5—N480.5 (3)N5—N4—C18—C20176.4 (3)
O3—Ni1—N5—N46.1 (2)C24—C19—C20—C212.6 (6)
N6—Ni1—N5—N4177.3 (3)C24—C19—C20—C18175.0 (3)
N3—Ni1—N5—N4100.1 (3)O3—C18—C20—C190.7 (5)
N5—Ni1—N6—C34173.5 (4)N4—C18—C20—C19179.1 (3)
N2—Ni1—N6—C349.1 (4)O3—C18—C20—C21176.8 (4)
O1—Ni1—N6—C3488.5 (4)N4—C18—C20—C211.7 (5)
O3—Ni1—N6—C34165.3 (3)C19—C20—C21—O4179.0 (4)
N3—Ni1—N6—C3467.7 (4)C18—C20—C21—O43.6 (6)
N5—Ni1—N6—C307.1 (3)C19—C20—C21—C222.8 (6)
N2—Ni1—N6—C30175.4 (3)C18—C20—C21—C22174.6 (4)
O1—Ni1—N6—C30105.1 (3)O4—C21—C22—C23178.2 (4)
O3—Ni1—N6—C301.0 (5)C20—C21—C22—C230.0 (6)
N3—Ni1—N6—C3098.7 (3)C21—C22—C23—C243.1 (6)
N5—Ni1—O1—C1171.4 (3)C21—C22—C23—C28177.4 (4)
N2—Ni1—O1—C16.2 (3)C20—C19—C24—C230.5 (6)
O3—Ni1—O1—C194.2 (3)C20—C19—C24—C25178.9 (4)
N6—Ni1—O1—C1108.9 (3)C22—C23—C24—C193.3 (6)
N3—Ni1—O1—C110.1 (5)C28—C23—C24—C19177.2 (4)
N5—Ni1—O3—C184.6 (2)C22—C23—C24—C25178.3 (4)
N2—Ni1—O3—C18172.7 (2)C28—C23—C24—C251.3 (6)
O1—Ni1—O3—C1895.4 (2)C19—C24—C25—C26177.4 (4)
N6—Ni1—O3—C1812.8 (4)C23—C24—C25—C261.0 (6)
N3—Ni1—O3—C18108.1 (2)C24—C25—C26—C270.5 (7)
Ni1—O1—C1—N16.8 (5)C25—C26—C27—C281.9 (8)
Ni1—O1—C1—C3173.8 (3)C26—C27—C28—C231.6 (8)
N2—N1—C1—O12.3 (6)C22—C23—C28—C27179.5 (5)
N2—N1—C1—C3178.3 (3)C24—C23—C28—C270.0 (6)
C7—C2—C3—C40.1 (6)N4—N5—C29—C30177.3 (3)
C7—C2—C3—C1178.1 (4)Ni1—N5—C29—C303.7 (5)
O1—C1—C3—C20.0 (6)C34—N6—C30—C311.8 (6)
N1—C1—C3—C2179.4 (4)Ni1—N6—C30—C31166.2 (3)
O1—C1—C3—C4177.9 (4)C34—N6—C30—C29179.1 (4)
N1—C1—C3—C42.7 (6)Ni1—N6—C30—C2911.1 (4)
C2—C3—C4—O2179.5 (4)N5—C29—C30—N610.3 (5)
C1—C3—C4—O22.6 (7)N5—C29—C30—C31167.0 (4)
C2—C3—C4—C50.7 (7)N6—C30—C31—C320.3 (7)
C1—C3—C4—C5178.7 (4)C29—C30—C31—C32177.4 (4)
O2—C4—C5—C6179.8 (4)C30—C31—C32—C331.3 (8)
C3—C4—C5—C61.3 (7)C31—C32—C33—C341.5 (8)
C4—C5—C6—C71.2 (7)C30—N6—C34—C331.6 (7)
C4—C5—C6—C11178.7 (4)Ni1—N6—C34—C33163.8 (4)
C5—C6—C7—C8179.6 (4)C32—C33—C34—N60.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N40.821.832.561 (4)148
O2—H2···N10.821.842.567 (4)147
C15—H15···O4i0.932.563.195 (6)126
C32—H32···O2ii0.932.383.295 (6)168
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C17H12N3O2)2]
Mr639.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)21.257 (3), 11.653 (3), 11.938 (3)
β (°) 91.686 (3)
V3)2955.6 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.69 × 0.66 × 0.13
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.641, 0.914
No. of measured, independent and
observed [I > 2σ(I)] reflections
14859, 5202, 3068
Rint0.089
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.149, 1.01
No. of reflections5202
No. of parameters408
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.45

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N40.821.832.561 (4)148.4
O2—H2···N10.821.842.567 (4)146.9
C15—H15···O4i0.932.563.195 (6)125.8
C32—H32···O2ii0.932.383.295 (6)167.6
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds