Download citation
Download citation
link to html
The title compound, C18H12F3PSe or SeP(4-FC6H4)3, where 4-FC6H4 is 4-fluoro­phenyl, crystallizes with two independent mol­ecules in the asymmetric unit. The two independent mol­ecules have very similar conformations and calculated cone angles of 166 and 168°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807044170/cv2301sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807044170/cv2301Isup2.hkl
Contains datablock I

CCDC reference: 663765

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C)= 0.003 Å
  • R factor = 0.025
  • wR factor = 0.061
  • Data-to-parameter ratio = 15.4

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

There has been extensive development in understanding the transition metal phosphorous bond by various groups, including our own (Roodt et al., 2003), with various techniques utilized such as single-crystal X-ray crystallography, multi nuclear NMR and IR. As part of this systematic investigation we are now also studying selenium bonded phosphourous ligands. With this approach there is no steric crowding effect, though crystal packing effects could still be present, as normally found in transition metal complexes with bulky ligands, e.g. in trans-[Rh(CO)Cl{P(OC6H5)3}2] cone angle variation from 156° to 167° was observed for the two phosphite ligands (Muller et al., 2006). The J(31P—77Se) coupling can also be used as an additional probe to obtain more information regarding the nature of the phosphorous bond. Reported here is the selenium derivate structure of the phosphine P(4—FC6H4)3.

The title compound, (I), crystallizes in the P21/c (Z=8) space group with two independent molecules in the asymmetric unit. All features of the molecules are as expected (Cambridge Structural Database; Version 5.27, update of August 2006; Allen, 2002) with the selenium atom and the three aryl groups adopting a distorted arrangement about phosphorous (see Fig. 1, Table 1). An overlay (Fig. 2) of the two independent molecules shows only minor deviations, possibly due to slightly different packing enviroments (r.m.s. deviation of the all non-H atoms = 0.1297 Å). This also result in a 2° deviation in the cone angles [calculated as described by Tolman (1977) and Otto et al. (2000) with Se repositioned to 2.28 Å from P atom). It is also noted that transition metal complexes with P(4—FC6H4)3 have a slightly smaller average cone angle value of 155° showing some effect of steric crowding at the metal coordination environment (data extracted and calculated from 32 useable examples in the CSD).

Related literature top

For general background, see: Roodt et al. (2003); Allen (2002). The cone angles were calculated in accordance with Tolman (1977) and Otto et al. (2000). For cone angles in a related structure, see: Muller et al. (2006).

Experimental top

P(4—FC6H4)3 and KSeCN were bought from Sigma-Aldrich and used as received. Eqimolar amounts of KSeCN and P(4—FC6H4)3 (ca. 0.04 mmol) were dissolved in the minimum amounts of methanol (ca. 20 ml). The KSeCN solution was added drop wise (5 min.) to the phosphine solution with stirring at room temperature. The final solution was left to evaporate slowly until dry to give crystals suitable for a single-crystal X-ray study. 1H NMR (CDCl3, 300 MHz, p.p.m.) 7.70 (m, 6H), 7.15 (m, 6H); 19F NMR (CDCl3, 282.34 MHz, p.p.m.) -107.4 (s, 3 F); 31P{H}NMR (CDCl3, 121.42 MHz, p.p.m.) 33.2 (t, 1P, 1J(P–Se) = 740 Hz)

Refinement top

The aromatic H atoms were placed in geometrically idealized positions (C—H = 0.93 Å) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The highest residual electron density was located 0.80 Å from C41.

Structure description top

There has been extensive development in understanding the transition metal phosphorous bond by various groups, including our own (Roodt et al., 2003), with various techniques utilized such as single-crystal X-ray crystallography, multi nuclear NMR and IR. As part of this systematic investigation we are now also studying selenium bonded phosphourous ligands. With this approach there is no steric crowding effect, though crystal packing effects could still be present, as normally found in transition metal complexes with bulky ligands, e.g. in trans-[Rh(CO)Cl{P(OC6H5)3}2] cone angle variation from 156° to 167° was observed for the two phosphite ligands (Muller et al., 2006). The J(31P—77Se) coupling can also be used as an additional probe to obtain more information regarding the nature of the phosphorous bond. Reported here is the selenium derivate structure of the phosphine P(4—FC6H4)3.

The title compound, (I), crystallizes in the P21/c (Z=8) space group with two independent molecules in the asymmetric unit. All features of the molecules are as expected (Cambridge Structural Database; Version 5.27, update of August 2006; Allen, 2002) with the selenium atom and the three aryl groups adopting a distorted arrangement about phosphorous (see Fig. 1, Table 1). An overlay (Fig. 2) of the two independent molecules shows only minor deviations, possibly due to slightly different packing enviroments (r.m.s. deviation of the all non-H atoms = 0.1297 Å). This also result in a 2° deviation in the cone angles [calculated as described by Tolman (1977) and Otto et al. (2000) with Se repositioned to 2.28 Å from P atom). It is also noted that transition metal complexes with P(4—FC6H4)3 have a slightly smaller average cone angle value of 155° showing some effect of steric crowding at the metal coordination environment (data extracted and calculated from 32 useable examples in the CSD).

For general background, see: Roodt et al. (2003); Allen (2002). The cone angles were calculated in accordance with Tolman (1977) and Otto et al. (2000). For cone angles in a related structure, see: Muller et al. (2006).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2003); cell refinement: CrysAlis RED (Oxford Diffraction, 2003); data reduction: CrysAlis RED (Oxford Diffraction, 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of (I) showing atomic numbering and 50% probability displacement ellipsoids. H atoms have been omitted for clarity. For the C atoms, the first digit indicates the ring number and the second digit indicates the position of the atom in the ring.
[Figure 2] Fig. 2. Superimposed wireframe drawing of the two molecules of SeP(4-FC6H4)3 in the asymmetric unit. H atoms have been omitted for clarity. The molecule containing P2 is indicated in red.
Tris(4-fluorophenyl)phosphine selenide top
Crystal data top
C18H12F3PSeF(000) = 1568
Mr = 395.21Dx = 1.619 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 812 reflections
a = 18.6554 (15) Åθ = 4.5–26°
b = 13.3102 (13) ŵ = 2.44 mm1
c = 13.0653 (18) ÅT = 100 K
β = 91.643 (9)°Rectangle, colourless
V = 3242.9 (6) Å30.19 × 0.14 × 0.09 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
6383 independent reflections
Radiation source: Enhance (Mo) X-ray Source5419 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 26.1°, θmin = 4.5°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2003)
h = 2323
Tmin = 0.654, Tmax = 0.810k = 1616
21720 measured reflectionsl = 1611
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0345P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.061(Δ/σ)max = 0.002
S = 1.06Δρmax = 0.38 e Å3
6383 reflectionsΔρmin = 0.33 e Å3
415 parameters
Crystal data top
C18H12F3PSeV = 3242.9 (6) Å3
Mr = 395.21Z = 8
Monoclinic, P21/cMo Kα radiation
a = 18.6554 (15) ŵ = 2.44 mm1
b = 13.3102 (13) ÅT = 100 K
c = 13.0653 (18) Å0.19 × 0.14 × 0.09 mm
β = 91.643 (9)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
6383 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2003)
5419 reflections with I > 2σ(I)
Tmin = 0.654, Tmax = 0.810Rint = 0.021
21720 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.06Δρmax = 0.38 e Å3
6383 reflectionsΔρmin = 0.33 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.621055 (10)0.103716 (15)0.729623 (14)0.01947 (6)
Se20.897574 (11)0.918160 (15)0.326819 (16)0.02365 (7)
P10.62681 (3)0.19901 (4)0.60059 (4)0.01482 (11)
P20.88819 (3)0.78304 (4)0.41002 (4)0.01678 (11)
F60.84795 (7)0.44720 (9)0.11754 (9)0.0368 (3)
F30.88414 (6)0.45923 (9)0.60402 (9)0.0291 (3)
F20.36650 (7)0.44879 (10)0.54894 (11)0.0409 (3)
F41.15036 (7)0.67567 (10)0.65056 (9)0.0399 (3)
F10.63466 (7)0.03582 (10)0.21669 (9)0.0339 (3)
F50.62867 (7)0.76698 (11)0.65890 (11)0.0444 (4)
C410.96798 (10)0.75060 (14)0.48581 (14)0.0167 (4)
C441.08909 (11)0.70120 (17)0.59752 (15)0.0260 (5)
C140.63309 (11)0.01933 (15)0.30470 (14)0.0222 (4)
C620.80951 (10)0.62562 (14)0.31662 (15)0.0202 (4)
H620.7710.64450.35860.024*
C520.75337 (12)0.84151 (17)0.46779 (17)0.0304 (5)
H520.75590.88670.41170.037*
C510.81223 (10)0.78129 (14)0.49330 (15)0.0189 (4)
C660.93154 (11)0.64628 (15)0.26487 (15)0.0214 (4)
H660.97640.67990.27080.026*
C560.80831 (11)0.71756 (15)0.57794 (15)0.0222 (4)
H560.84850.67730.59740.027*
C461.02144 (10)0.82209 (15)0.50358 (15)0.0202 (4)
H461.01560.88810.4770.024*
C360.76472 (10)0.25537 (15)0.66323 (15)0.0215 (4)
H360.7640.1970.70510.026*
C150.56991 (11)0.02464 (15)0.35560 (15)0.0231 (5)
H150.52820.00920.33050.028*
C420.97688 (11)0.65346 (15)0.52487 (15)0.0212 (4)
H420.9410.60410.51170.025*
C110.63048 (10)0.13024 (14)0.48080 (14)0.0155 (4)
C330.76667 (12)0.42744 (16)0.54342 (17)0.0292 (5)
H330.76760.48680.50310.035*
C240.42770 (11)0.39403 (15)0.56057 (17)0.0248 (5)
C540.68954 (11)0.77189 (17)0.60401 (17)0.0290 (5)
C120.69356 (10)0.12266 (15)0.42664 (15)0.0201 (4)
H120.73570.15610.45080.024*
C250.46805 (11)0.37678 (15)0.47605 (16)0.0242 (5)
H250.45450.40430.41120.029*
C640.85697 (12)0.52250 (15)0.18719 (15)0.0249 (5)
C630.80001 (11)0.54816 (15)0.24591 (16)0.0239 (5)
H630.75540.51410.23860.029*
C310.70485 (10)0.28041 (14)0.60301 (14)0.0164 (4)
C431.03771 (12)0.62883 (16)0.58257 (15)0.0260 (5)
H431.04360.56360.6110.031*
C160.56885 (11)0.08081 (14)0.44465 (15)0.0202 (4)
H160.52580.08580.48150.024*
C220.50643 (11)0.29953 (15)0.66749 (15)0.0228 (4)
H220.51950.27310.73290.027*
C340.82465 (11)0.39990 (14)0.60367 (15)0.0210 (4)
C210.54847 (10)0.27843 (14)0.58411 (14)0.0164 (4)
C610.87489 (10)0.67566 (14)0.32648 (14)0.0167 (4)
C320.70671 (11)0.36624 (16)0.54298 (16)0.0276 (5)
H320.66620.38330.50090.033*
C260.52904 (10)0.31812 (14)0.48820 (15)0.0192 (4)
H260.55790.30480.4310.023*
C451.08307 (11)0.79745 (16)0.55991 (15)0.0247 (5)
H451.120.84550.57210.03*
C130.69482 (11)0.06620 (15)0.33732 (16)0.0236 (5)
H130.73750.06030.29980.028*
C550.74655 (12)0.71257 (16)0.63360 (16)0.0278 (5)
H550.74370.66910.6910.033*
C350.82578 (11)0.31522 (15)0.66261 (15)0.0244 (5)
H350.86730.29760.70230.029*
C650.92239 (12)0.56852 (15)0.19553 (16)0.0247 (5)
H650.96080.54750.15450.03*
C230.44564 (12)0.35863 (16)0.65614 (17)0.0284 (5)
H230.41720.37420.71320.034*
C530.69128 (12)0.83648 (19)0.52305 (18)0.0365 (6)
H530.65090.8770.50510.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.01902 (11)0.02054 (11)0.01881 (11)0.00033 (8)0.00038 (8)0.00614 (8)
Se20.02811 (13)0.01797 (11)0.02475 (12)0.00212 (8)0.00152 (9)0.00646 (8)
P10.0148 (3)0.0145 (2)0.0151 (2)0.00030 (19)0.00054 (19)0.00088 (19)
P20.0172 (3)0.0150 (2)0.0181 (3)0.0003 (2)0.0001 (2)0.0015 (2)
F60.0503 (9)0.0255 (7)0.0350 (7)0.0060 (6)0.0072 (6)0.0145 (6)
F30.0259 (7)0.0280 (7)0.0338 (7)0.0128 (5)0.0072 (5)0.0049 (6)
F20.0266 (7)0.0352 (8)0.0608 (9)0.0166 (6)0.0015 (7)0.0080 (7)
F40.0331 (8)0.0494 (9)0.0361 (7)0.0166 (6)0.0188 (6)0.0110 (6)
F10.0375 (8)0.0388 (8)0.0254 (7)0.0020 (6)0.0017 (6)0.0168 (6)
F50.0304 (8)0.0546 (9)0.0495 (9)0.0058 (7)0.0223 (7)0.0147 (7)
C410.0177 (10)0.0189 (10)0.0136 (9)0.0013 (8)0.0011 (8)0.0005 (8)
C440.0233 (11)0.0371 (13)0.0173 (10)0.0120 (9)0.0051 (9)0.0064 (9)
C140.0309 (12)0.0196 (11)0.0159 (10)0.0018 (9)0.0004 (9)0.0039 (8)
C620.0197 (11)0.0192 (10)0.0218 (10)0.0001 (8)0.0025 (8)0.0012 (8)
C520.0289 (13)0.0333 (13)0.0291 (12)0.0094 (10)0.0025 (10)0.0061 (10)
C510.0193 (10)0.0182 (10)0.0191 (10)0.0006 (8)0.0006 (8)0.0041 (8)
C660.0194 (11)0.0216 (11)0.0233 (10)0.0019 (8)0.0039 (9)0.0002 (9)
C560.0224 (11)0.0200 (10)0.0243 (11)0.0012 (8)0.0017 (9)0.0018 (9)
C460.0205 (11)0.0210 (10)0.0193 (10)0.0003 (8)0.0031 (8)0.0009 (8)
C360.0221 (11)0.0185 (10)0.0238 (11)0.0024 (8)0.0026 (9)0.0027 (8)
C150.0226 (11)0.0232 (11)0.0232 (11)0.0046 (9)0.0020 (9)0.0032 (9)
C420.0235 (11)0.0198 (10)0.0203 (10)0.0010 (8)0.0003 (8)0.0012 (8)
C110.0159 (10)0.0153 (9)0.0152 (9)0.0003 (8)0.0001 (8)0.0020 (8)
C330.0283 (13)0.0210 (11)0.0381 (13)0.0041 (9)0.0004 (10)0.0103 (10)
C240.0177 (11)0.0166 (10)0.0400 (13)0.0047 (8)0.0014 (9)0.0027 (9)
C540.0223 (12)0.0346 (13)0.0308 (12)0.0056 (10)0.0111 (10)0.0137 (10)
C120.0162 (10)0.0212 (10)0.0228 (10)0.0008 (8)0.0008 (8)0.0025 (8)
C250.0258 (12)0.0225 (11)0.0237 (11)0.0011 (9)0.0086 (9)0.0039 (9)
C640.0361 (13)0.0171 (10)0.0214 (11)0.0003 (9)0.0002 (9)0.0022 (9)
C630.0232 (11)0.0200 (11)0.0284 (11)0.0056 (9)0.0019 (9)0.0012 (9)
C310.0187 (10)0.0147 (9)0.0161 (9)0.0008 (8)0.0028 (8)0.0028 (8)
C430.0359 (13)0.0225 (11)0.0194 (11)0.0087 (9)0.0019 (9)0.0007 (9)
C160.0166 (10)0.0227 (11)0.0215 (10)0.0011 (8)0.0038 (8)0.0020 (8)
C220.0278 (12)0.0217 (11)0.0189 (10)0.0031 (9)0.0030 (9)0.0033 (8)
C340.0212 (11)0.0189 (10)0.0235 (11)0.0072 (8)0.0082 (9)0.0067 (8)
C210.0167 (10)0.0141 (9)0.0183 (10)0.0008 (8)0.0002 (8)0.0014 (8)
C610.0205 (10)0.0153 (9)0.0143 (9)0.0008 (8)0.0016 (8)0.0031 (8)
C320.0245 (12)0.0242 (11)0.0336 (12)0.0026 (9)0.0065 (10)0.0123 (10)
C260.0212 (11)0.0189 (10)0.0175 (10)0.0001 (8)0.0016 (8)0.0001 (8)
C450.0177 (11)0.0323 (12)0.0240 (11)0.0015 (9)0.0016 (9)0.0092 (9)
C130.0225 (11)0.0242 (11)0.0245 (11)0.0006 (9)0.0061 (9)0.0028 (9)
C550.0318 (13)0.0272 (12)0.0248 (11)0.0075 (10)0.0088 (10)0.0033 (9)
C350.0210 (11)0.0281 (12)0.0239 (11)0.0019 (9)0.0052 (9)0.0003 (9)
C650.0275 (12)0.0219 (11)0.0251 (11)0.0022 (9)0.0079 (9)0.0006 (9)
C230.0315 (13)0.0227 (11)0.0316 (12)0.0061 (9)0.0120 (10)0.0023 (10)
C530.0238 (12)0.0457 (15)0.0403 (14)0.0127 (11)0.0048 (10)0.0025 (12)
Geometric parameters (Å, º) top
Se1—P12.1149 (5)C15—C161.383 (3)
Se2—P22.1113 (6)C15—H150.95
P1—C211.8116 (19)C42—C431.384 (3)
P1—C311.8143 (19)C42—H420.95
P1—C111.8161 (19)C11—C121.394 (3)
P2—C611.8111 (19)C11—C161.395 (3)
P2—C511.811 (2)C33—C341.369 (3)
P2—C411.8161 (19)C33—C321.384 (3)
F6—C641.361 (2)C33—H330.95
F3—C341.362 (2)C24—C231.367 (3)
F2—C241.359 (2)C24—C251.373 (3)
F4—C441.363 (2)C54—C531.364 (3)
F1—C141.365 (2)C54—C551.371 (3)
F5—C541.362 (2)C12—C131.389 (3)
C41—C461.393 (3)C12—H120.95
C41—C421.398 (3)C25—C261.385 (3)
C44—C431.369 (3)C25—H250.95
C44—C451.376 (3)C64—C651.367 (3)
C14—C131.367 (3)C64—C631.371 (3)
C14—C151.372 (3)C63—H630.95
C62—C631.392 (3)C31—C321.387 (3)
C62—C611.392 (3)C43—H430.95
C62—H620.95C16—H160.95
C52—C531.384 (3)C22—C231.385 (3)
C52—C511.392 (3)C22—C211.389 (3)
C52—H520.95C22—H220.95
C51—C561.397 (3)C34—C351.365 (3)
C66—C651.383 (3)C21—C261.398 (3)
C66—C611.402 (3)C32—H320.95
C66—H660.95C26—H260.95
C56—C551.381 (3)C45—H450.95
C56—H560.95C13—H130.95
C46—C451.387 (3)C55—H550.95
C46—H460.95C35—H350.95
C36—C311.388 (3)C65—H650.95
C36—C351.390 (3)C23—H230.95
C36—H360.95C53—H530.95
C21—P1—C31107.33 (9)C13—C12—C11120.04 (18)
C21—P1—C11104.00 (8)C13—C12—H12120
C31—P1—C11105.43 (8)C11—C12—H12120
C21—P1—Se1112.67 (6)C24—C25—C26118.00 (18)
C31—P1—Se1113.79 (6)C24—C25—H25121
C11—P1—Se1112.87 (6)C26—C25—H25121
C61—P2—C51104.82 (9)F6—C64—C65118.44 (18)
C61—P2—C41103.70 (9)F6—C64—C63118.33 (18)
C51—P2—C41108.21 (9)C65—C64—C63123.23 (19)
C61—P2—Se2111.96 (6)C64—C63—C62118.02 (19)
C51—P2—Se2113.46 (7)C64—C63—H63121
C41—P2—Se2113.86 (6)C62—C63—H63121
C46—C41—C42119.59 (18)C32—C31—C36119.05 (18)
C46—C41—P2120.01 (15)C32—C31—P1121.01 (15)
C42—C41—P2120.39 (15)C36—C31—P1119.91 (15)
F4—C44—C43118.09 (19)C44—C43—C42118.10 (19)
F4—C44—C45118.21 (19)C44—C43—H43121
C43—C44—C45123.68 (19)C42—C43—H43121
F1—C14—C13118.01 (18)C15—C16—C11120.53 (18)
F1—C14—C15118.40 (18)C15—C16—H16119.7
C13—C14—C15123.59 (18)C11—C16—H16119.7
C63—C62—C61120.67 (18)C23—C22—C21120.66 (19)
C63—C62—H62119.7C23—C22—H22119.7
C61—C62—H62119.7C21—C22—H22119.7
C53—C52—C51120.9 (2)F3—C34—C35118.53 (18)
C53—C52—H52119.6F3—C34—C33118.48 (18)
C51—C52—H52119.6C35—C34—C33122.99 (18)
C52—C51—C56118.69 (19)C22—C21—C26119.27 (18)
C52—C51—P2118.29 (15)C22—C21—P1119.77 (14)
C56—C51—P2122.88 (15)C26—C21—P1120.96 (14)
C65—C66—C61120.25 (18)C62—C61—C66119.08 (18)
C65—C66—H66119.9C62—C61—P2122.53 (15)
C61—C66—H66119.9C66—C61—P2118.27 (14)
C55—C56—C51120.6 (2)C33—C32—C31121.06 (19)
C55—C56—H56119.7C33—C32—H32119.5
C51—C56—H56119.7C31—C32—H32119.5
C45—C46—C41120.38 (19)C25—C26—C21120.44 (18)
C45—C46—H46119.8C25—C26—H26119.8
C41—C46—H46119.8C21—C26—H26119.8
C31—C36—C35120.34 (19)C44—C45—C46117.90 (19)
C31—C36—H36119.8C44—C45—H45121
C35—C36—H36119.8C46—C45—H45121
C14—C15—C16117.95 (18)C14—C13—C12118.32 (19)
C14—C15—H15121C14—C13—H13120.8
C16—C15—H15121C12—C13—H13120.8
C43—C42—C41120.33 (19)C54—C55—C56118.4 (2)
C43—C42—H42119.8C54—C55—H55120.8
C41—C42—H42119.8C56—C55—H55120.8
C12—C11—C16119.56 (17)C34—C35—C36118.50 (19)
C12—C11—P1121.81 (14)C34—C35—H35120.8
C16—C11—P1118.59 (14)C36—C35—H35120.8
C34—C33—C32118.03 (19)C64—C65—C66118.73 (19)
C34—C33—H33121C64—C65—H65120.6
C32—C33—H33121C66—C65—H65120.6
F2—C24—C23118.01 (19)C24—C23—C22118.15 (19)
F2—C24—C25118.54 (19)C24—C23—H23120.9
C23—C24—C25123.45 (19)C22—C23—H23120.9
F5—C54—C53118.5 (2)C54—C53—C52118.3 (2)
F5—C54—C55118.4 (2)C54—C53—H53120.9
C53—C54—C55123.1 (2)C52—C53—H53120.9
C61—P2—C41—C46136.08 (15)P1—C11—C16—C15177.74 (15)
C51—P2—C41—C46112.98 (16)C32—C33—C34—F3179.50 (19)
Se2—P2—C41—C4614.17 (17)C32—C33—C34—C350.1 (3)
C61—P2—C41—C4242.60 (17)C23—C22—C21—C260.4 (3)
C51—P2—C41—C4268.34 (17)C23—C22—C21—P1178.87 (16)
Se2—P2—C41—C42164.52 (13)C31—P1—C21—C22103.15 (16)
C53—C52—C51—C561.9 (3)C11—P1—C21—C22145.44 (16)
C53—C52—C51—P2174.03 (18)Se1—P1—C21—C2222.88 (17)
C61—P2—C51—C5296.43 (17)C31—P1—C21—C2677.59 (17)
C41—P2—C51—C52153.38 (16)C11—P1—C21—C2633.82 (18)
Se2—P2—C51—C5226.01 (18)Se1—P1—C21—C26156.38 (14)
C61—P2—C51—C5679.32 (18)C63—C62—C61—C660.7 (3)
C41—P2—C51—C5630.86 (19)C63—C62—C61—P2175.17 (15)
Se2—P2—C51—C56158.23 (14)C65—C66—C61—C620.1 (3)
C52—C51—C56—C551.6 (3)C65—C66—C61—P2176.15 (15)
P2—C51—C56—C55174.11 (15)C51—P2—C61—C6215.23 (18)
C42—C41—C46—C450.2 (3)C41—P2—C61—C62128.63 (16)
P2—C41—C46—C45178.91 (14)Se2—P2—C61—C62108.19 (15)
F1—C14—C15—C16179.93 (17)C51—P2—C61—C66168.88 (15)
C13—C14—C15—C160.2 (3)C41—P2—C61—C6655.48 (16)
C46—C41—C42—C431.3 (3)Se2—P2—C61—C6667.70 (16)
P2—C41—C42—C43179.97 (15)C34—C33—C32—C311.0 (3)
C21—P1—C11—C12131.31 (16)C36—C31—C32—C330.9 (3)
C31—P1—C11—C1218.53 (18)P1—C31—C32—C33178.87 (17)
Se1—P1—C11—C12106.26 (15)C24—C25—C26—C210.2 (3)
C21—P1—C11—C1651.11 (17)C22—C21—C26—C250.8 (3)
C31—P1—C11—C16163.89 (15)P1—C21—C26—C25178.45 (15)
Se1—P1—C11—C1671.32 (16)F4—C44—C45—C46178.24 (16)
C16—C11—C12—C130.0 (3)C43—C44—C45—C460.1 (3)
P1—C11—C12—C13177.56 (15)C41—C46—C45—C440.4 (3)
F2—C24—C25—C26177.91 (18)F1—C14—C13—C12179.82 (17)
C23—C24—C25—C261.8 (3)C15—C14—C13—C120.3 (3)
F6—C64—C63—C62179.67 (17)C11—C12—C13—C140.2 (3)
C65—C64—C63—C620.6 (3)F5—C54—C55—C56179.98 (18)
C61—C62—C63—C640.4 (3)C53—C54—C55—C560.9 (3)
C35—C36—C31—C320.5 (3)C51—C56—C55—C540.3 (3)
C35—C36—C31—P1177.54 (15)F3—C34—C35—C36179.19 (17)
C21—P1—C31—C3235.25 (19)C33—C34—C35—C361.4 (3)
C11—P1—C31—C3275.17 (18)C31—C36—C35—C341.6 (3)
Se1—P1—C31—C32160.61 (15)F6—C64—C65—C66178.87 (17)
C21—P1—C31—C36146.77 (15)C63—C64—C65—C661.4 (3)
C11—P1—C31—C36102.81 (16)C61—C66—C65—C641.1 (3)
Se1—P1—C31—C3621.41 (17)F2—C24—C23—C22177.51 (19)
F4—C44—C43—C42177.21 (17)C25—C24—C23—C222.2 (3)
C45—C44—C43—C421.2 (3)C21—C22—C23—C241.1 (3)
C41—C42—C43—C441.7 (3)F5—C54—C53—C52179.7 (2)
C14—C15—C16—C110.0 (3)C55—C54—C53—C520.6 (4)
C12—C11—C16—C150.1 (3)C51—C52—C53—C540.8 (3)

Experimental details

Crystal data
Chemical formulaC18H12F3PSe
Mr395.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)18.6554 (15), 13.3102 (13), 13.0653 (18)
β (°) 91.643 (9)
V3)3242.9 (6)
Z8
Radiation typeMo Kα
µ (mm1)2.44
Crystal size (mm)0.19 × 0.14 × 0.09
Data collection
DiffractometerOxford Diffraction Xcalibur CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2003)
Tmin, Tmax0.654, 0.810
No. of measured, independent and
observed [I > 2σ(I)] reflections
21720, 6383, 5419
Rint0.021
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.061, 1.06
No. of reflections6383
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.33

Computer programs: CrysAlis CCD (Oxford Diffraction, 2003), CrysAlis RED (Oxford Diffraction, 2003), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Se1—P12.1149 (5)P1—C111.8161 (19)
Se2—P22.1113 (6)P2—C611.8111 (19)
P1—C211.8116 (19)P2—C511.811 (2)
P1—C311.8143 (19)P2—C411.8161 (19)
C21—P1—C31107.33 (9)C61—P2—C51104.82 (9)
C21—P1—C11104.00 (8)C61—P2—C41103.70 (9)
C31—P1—C11105.43 (8)C51—P2—C41108.21 (9)
C21—P1—Se1112.67 (6)C61—P2—Se2111.96 (6)
C31—P1—Se1113.79 (6)C51—P2—Se2113.46 (7)
C11—P1—Se1112.87 (6)C41—P2—Se2113.86 (6)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds