Download citation
Download citation
link to html
In the title steroid compound, C21H26O2, ring A is essentially planar due to the presence of two C=C bonds [1.326 (3) and 1.332 (3) Å]. Rings B and C have regular chair conformations, while ring D has an envelope conformation. Weak inter­molecular C—H...O hydrogen bonds stabilize the crystal packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807036732/cv2284sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807036732/cv2284Isup2.hkl
Contains datablock I

CCDC reference: 657887

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.040
  • wR factor = 0.102
  • Data-to-parameter ratio = 10.7

checkCIF/PLATON results

No syntax errors found



Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.49 From the CIF: _reflns_number_total 2274 Count of symmetry unique reflns 2289 Completeness (_total/calc) 99.34% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT791_ALERT_1_G Confirm the Absolute Configuration of C8 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C9 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C10 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C13 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C14 = . S
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound, (I), is used in the synthesis of prednisolone, because the ring A is fully functionalized a 1,4-dien-3-one system (Nitta et al., 1985). We present here its crystal structure, which exhibits the crystal packing close to those observed in 17α-hydroxy-4-pregnen-20-yn-3-one (II) (Reisch et al., 1993) and 17α-hydroxypregna-1,4-diene-3,20-dione (III) (Sheng et al., 2007). In (I) (Fig. 1), all bond lengths and angles agree with those in (II) and (III). The C1C2, C4C5, C16C17, O1—C3 and O2—C18 distances are 1.326 (3) Å, 1.332 (3) Å, 1.332 (3) Å, 1.226 (3) Å and 1.221 (2) Å, respectively.

Ring A and atoms O1 and C6 are almost coplanar with the r.m.s. deviation of 0.061 (1) Å. Rings B and C show normal chair conformations, which are very similar to those reported by Xia et al. (2005). Ring D has an envelope conformation with atom C14 deviating at 0.589 (3) Å from the mean plane C13/C15/C16/C17 [in spite of structures (II) and (III) with the most deviating atom C13].

In the crystal, the weak intermolecular C—H···O hydrogen bonds (Table 1) stabilize the packing (Fig. 2).

Related literature top

For literature describing similar structures with similar properties to the title compound, see: Nitta et al. (1985); Reisch et al. (1993); Sheng et al. (2007); Xia et al. (2005).

For related literature, see: Patil et al. (2002).

Experimental top

Pregna-1,4,16-triene-3,20-dione was synthesized according to Patil et al. (2002) in a form of a powder. Crystals of (I) suitable for structure analysis were obtained by slow evaporation from a mixture of tetrahydrofuran, acetone and water (4:4:2, v/v).

Refinement top

Due to absence of any significant anomalous scatterers in the molecule, the 1591 Friedel pairs were merged before the final refinement. The absolute configuration was assigned to correspond with that of the known chiral centres in a precursor molecule, which remained unchanged during the synthesis of the title compound. The C-bound H atoms were placed at calculated positions (C—H 0.93–0.98 Å) and constrained to ride on their parent atoms, withUiso(Hmethyl) = 1.5Ueq(Cmethyl) or Uiso(Hnon-methyl) = 1.2Ueq(Cnon-methyl).

Structure description top

The title compound, (I), is used in the synthesis of prednisolone, because the ring A is fully functionalized a 1,4-dien-3-one system (Nitta et al., 1985). We present here its crystal structure, which exhibits the crystal packing close to those observed in 17α-hydroxy-4-pregnen-20-yn-3-one (II) (Reisch et al., 1993) and 17α-hydroxypregna-1,4-diene-3,20-dione (III) (Sheng et al., 2007). In (I) (Fig. 1), all bond lengths and angles agree with those in (II) and (III). The C1C2, C4C5, C16C17, O1—C3 and O2—C18 distances are 1.326 (3) Å, 1.332 (3) Å, 1.332 (3) Å, 1.226 (3) Å and 1.221 (2) Å, respectively.

Ring A and atoms O1 and C6 are almost coplanar with the r.m.s. deviation of 0.061 (1) Å. Rings B and C show normal chair conformations, which are very similar to those reported by Xia et al. (2005). Ring D has an envelope conformation with atom C14 deviating at 0.589 (3) Å from the mean plane C13/C15/C16/C17 [in spite of structures (II) and (III) with the most deviating atom C13].

In the crystal, the weak intermolecular C—H···O hydrogen bonds (Table 1) stabilize the packing (Fig. 2).

For literature describing similar structures with similar properties to the title compound, see: Nitta et al. (1985); Reisch et al. (1993); Sheng et al. (2007); Xia et al. (2005).

For related literature, see: Patil et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, ????); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I) with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of (I), viewed along the b axis. Hydrogen- bonds are shown as dashed lines.
Pregna-1,4,16-triene-3,20-dione top
Crystal data top
C21H26O2F(000) = 672
Mr = 310.42Dx = 1.199 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3759 reflections
a = 6.3625 (12) Åθ = 3.2–26.9°
b = 11.745 (2) ŵ = 0.08 mm1
c = 23.007 (4) ÅT = 296 K
V = 1719.2 (5) Å3Block, pale yellow
Z = 40.25 × 0.20 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2274 independent reflections
Radiation source: fine-focus sealed tube1871 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 86
Tmin = 0.981, Tmax = 0.999k = 1512
10912 measured reflectionsl = 2629
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.2215P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.15 e Å3
2274 reflectionsΔρmin = 0.13 e Å3
212 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0073 (16)
Primary atom site location: structure-invariant direct methodsAbsolute structure: see text
Secondary atom site location: difference Fourier map
Crystal data top
C21H26O2V = 1719.2 (5) Å3
Mr = 310.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.3625 (12) ŵ = 0.08 mm1
b = 11.745 (2) ÅT = 296 K
c = 23.007 (4) Å0.25 × 0.20 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2274 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1871 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.999Rint = 0.028
10912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.05Δρmax = 0.15 e Å3
2274 reflectionsΔρmin = 0.13 e Å3
212 parametersAbsolute structure: see text
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9371 (4)0.57024 (18)0.48495 (8)0.1004 (7)
O21.2908 (3)0.79394 (18)0.91843 (8)0.0839 (6)
C11.0192 (4)0.7610 (2)0.60194 (9)0.0619 (6)
H11.11420.81760.61230.074*
C21.0551 (4)0.7048 (3)0.55291 (10)0.0723 (7)
H21.17380.72240.53110.087*
C30.9126 (5)0.6160 (2)0.53236 (10)0.0683 (7)
C40.7407 (4)0.5879 (2)0.57074 (9)0.0625 (6)
H40.65240.52810.56030.075*
C50.7016 (3)0.64276 (17)0.62024 (9)0.0501 (5)
C60.5246 (4)0.6074 (2)0.65934 (9)0.0617 (6)
H6A0.45330.54200.64270.074*
H6B0.42370.66900.66250.074*
C70.6068 (4)0.57713 (18)0.71942 (9)0.0551 (6)
H7A0.69220.50890.71680.066*
H7B0.48910.56090.74490.066*
C80.7380 (3)0.67328 (16)0.74551 (8)0.0428 (4)
H80.64770.73980.75150.051*
C90.9196 (3)0.70629 (16)0.70402 (8)0.0406 (4)
H91.00360.63710.69870.049*
C100.8374 (3)0.74005 (16)0.64175 (8)0.0461 (5)
C111.0676 (3)0.79469 (18)0.73120 (8)0.0506 (5)
H11A0.99400.86680.73410.061*
H11B1.18690.80570.70550.061*
C121.1488 (3)0.76146 (18)0.79171 (9)0.0500 (5)
H12A1.23930.69530.78860.060*
H12B1.23090.82350.80780.060*
C130.9649 (3)0.73475 (15)0.83207 (8)0.0431 (5)
C140.8354 (3)0.63945 (16)0.80305 (8)0.0437 (4)
H140.93760.57990.79340.052*
C150.7042 (4)0.5901 (2)0.85305 (9)0.0614 (6)
H15A0.57750.63410.85980.074*
H15B0.66740.51110.84620.074*
C160.8584 (4)0.60245 (19)0.90194 (9)0.0605 (6)
H160.84980.56190.93660.073*
C171.0091 (4)0.67786 (17)0.89034 (8)0.0491 (5)
C181.1800 (4)0.7120 (2)0.92989 (9)0.0596 (6)
C191.2148 (5)0.6444 (3)0.98430 (10)0.0841 (9)
H19A1.32630.67821.00650.126*
H19B1.25210.56770.97430.126*
H19C1.08820.64391.00700.126*
C200.8361 (4)0.84353 (17)0.84474 (9)0.0583 (6)
H20A0.91700.89380.86890.087*
H20B0.70840.82330.86440.087*
H20C0.80310.88110.80880.087*
C210.7052 (4)0.85114 (18)0.64361 (10)0.0650 (7)
H21A0.63800.86240.60670.098*
H21B0.79560.91460.65180.098*
H21C0.60040.84510.67350.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1292 (18)0.1085 (15)0.0636 (11)0.0078 (15)0.0199 (12)0.0263 (10)
O20.0872 (14)0.0929 (13)0.0717 (11)0.0241 (13)0.0179 (10)0.0001 (10)
C10.0630 (14)0.0734 (15)0.0493 (11)0.0159 (13)0.0024 (11)0.0101 (11)
C20.0675 (16)0.0992 (19)0.0502 (12)0.0030 (16)0.0145 (12)0.0093 (13)
C30.0827 (18)0.0691 (15)0.0532 (13)0.0111 (15)0.0042 (13)0.0050 (11)
C40.0750 (16)0.0569 (13)0.0555 (13)0.0038 (13)0.0047 (12)0.0082 (11)
C50.0515 (12)0.0496 (11)0.0492 (11)0.0004 (10)0.0050 (10)0.0017 (9)
C60.0530 (13)0.0698 (14)0.0623 (13)0.0163 (12)0.0024 (11)0.0081 (11)
C70.0536 (13)0.0549 (12)0.0568 (12)0.0154 (11)0.0062 (11)0.0041 (10)
C80.0406 (10)0.0383 (9)0.0495 (10)0.0017 (8)0.0049 (9)0.0015 (8)
C90.0394 (10)0.0378 (9)0.0445 (9)0.0014 (8)0.0026 (8)0.0013 (8)
C100.0500 (11)0.0430 (10)0.0454 (10)0.0014 (9)0.0001 (9)0.0007 (8)
C110.0497 (12)0.0530 (11)0.0491 (10)0.0129 (10)0.0044 (9)0.0033 (9)
C120.0463 (11)0.0536 (11)0.0500 (10)0.0088 (10)0.0002 (10)0.0008 (9)
C130.0456 (11)0.0382 (10)0.0455 (10)0.0003 (9)0.0034 (9)0.0024 (8)
C140.0454 (11)0.0385 (9)0.0473 (10)0.0009 (9)0.0058 (9)0.0005 (8)
C150.0670 (14)0.0599 (13)0.0573 (13)0.0170 (12)0.0088 (12)0.0069 (10)
C160.0737 (15)0.0613 (13)0.0464 (11)0.0033 (13)0.0053 (12)0.0078 (10)
C170.0565 (12)0.0463 (11)0.0445 (10)0.0069 (10)0.0050 (10)0.0010 (9)
C180.0605 (14)0.0669 (14)0.0514 (12)0.0079 (13)0.0024 (11)0.0064 (11)
C190.091 (2)0.103 (2)0.0587 (14)0.0107 (19)0.0158 (15)0.0070 (14)
C200.0707 (14)0.0453 (11)0.0588 (12)0.0101 (11)0.0014 (12)0.0061 (9)
C210.0818 (17)0.0492 (12)0.0641 (13)0.0098 (13)0.0145 (13)0.0035 (10)
Geometric parameters (Å, º) top
O1—C31.226 (3)C11—H11A0.9700
O2—C181.221 (3)C11—H11B0.9700
C1—C21.326 (3)C12—C131.526 (3)
C1—C101.496 (3)C12—H12A0.9700
C1—H10.9300C12—H12B0.9700
C2—C31.461 (4)C13—C171.524 (3)
C2—H20.9300C13—C141.542 (3)
C3—C41.444 (4)C13—C201.545 (3)
C4—C51.332 (3)C14—C151.535 (3)
C4—H40.9300C14—H140.9800
C5—C61.500 (3)C15—C161.499 (3)
C5—C101.516 (3)C15—H15A0.9700
C6—C71.520 (3)C15—H15B0.9700
C6—H6A0.9700C16—C171.332 (3)
C6—H6B0.9700C16—H160.9300
C7—C81.527 (3)C17—C181.473 (3)
C7—H7A0.9700C18—C191.499 (3)
C7—H7B0.9700C19—H19A0.9599
C8—C141.515 (3)C19—H19B0.9599
C8—C91.548 (3)C19—H19C0.9599
C8—H80.9800C20—H20A0.9599
C9—C111.535 (3)C20—H20B0.9599
C9—C101.576 (3)C20—H20C0.9599
C9—H90.9800C21—H21A0.9599
C10—C211.553 (3)C21—H21B0.9599
C11—C121.535 (3)C21—H21C0.9599
C2—C1—C10124.9 (2)C13—C12—C11110.24 (17)
C2—C1—H1117.6C13—C12—H12A109.6
C10—C1—H1117.6C11—C12—H12A109.6
C1—C2—C3121.6 (2)C13—C12—H12B109.6
C1—C2—H2119.2C11—C12—H12B109.6
C3—C2—H2119.2H12A—C12—H12B108.1
O1—C3—C4122.7 (3)C17—C13—C12118.94 (18)
O1—C3—C2121.5 (3)C17—C13—C1499.28 (15)
C4—C3—C2115.8 (2)C12—C13—C14107.19 (15)
C5—C4—C3123.6 (2)C17—C13—C20107.12 (15)
C5—C4—H4118.2C12—C13—C20110.57 (16)
C3—C4—H4118.2C14—C13—C20113.46 (17)
C4—C5—C6121.2 (2)C8—C14—C15122.14 (18)
C4—C5—C10122.5 (2)C8—C14—C13113.99 (15)
C6—C5—C10116.17 (17)C15—C14—C13103.89 (15)
C5—C6—C7110.57 (19)C8—C14—H14105.1
C5—C6—H6A109.5C15—C14—H14105.1
C7—C6—H6A109.5C13—C14—H14105.1
C5—C6—H6B109.5C16—C15—C1499.80 (18)
C7—C6—H6B109.5C16—C15—H15A111.8
H6A—C6—H6B108.1C14—C15—H15A111.8
C6—C7—C8111.90 (17)C16—C15—H15B111.8
C6—C7—H7A109.2C14—C15—H15B111.8
C8—C7—H7A109.2H15A—C15—H15B109.5
C6—C7—H7B109.2C17—C16—C15112.64 (18)
C8—C7—H7B109.2C17—C16—H16123.7
H7A—C7—H7B107.9C15—C16—H16123.7
C14—C8—C7111.90 (16)C16—C17—C18126.1 (2)
C14—C8—C9107.43 (16)C16—C17—C13109.56 (19)
C7—C8—C9110.53 (15)C18—C17—C13124.0 (2)
C14—C8—H8109.0O2—C18—C17120.5 (2)
C7—C8—H8109.0O2—C18—C19120.8 (2)
C9—C8—H8109.0C17—C18—C19118.7 (2)
C11—C9—C8112.10 (15)C18—C19—H19A109.5
C11—C9—C10113.81 (16)C18—C19—H19B109.5
C8—C9—C10112.09 (16)H19A—C19—H19B109.5
C11—C9—H9106.0C18—C19—H19C109.5
C8—C9—H9106.0H19A—C19—H19C109.5
C10—C9—H9106.0H19B—C19—H19C109.5
C1—C10—C5111.39 (17)C13—C20—H20A109.5
C1—C10—C21107.31 (18)C13—C20—H20B109.5
C5—C10—C21109.50 (18)H20A—C20—H20B109.5
C1—C10—C9109.97 (17)C13—C20—H20C109.5
C5—C10—C9107.24 (15)H20A—C20—H20C109.5
C21—C10—C9111.48 (16)H20B—C20—H20C109.5
C9—C11—C12113.82 (16)C10—C21—H21A109.5
C9—C11—H11A108.8C10—C21—H21B109.5
C12—C11—H11A108.8H21A—C21—H21B109.5
C9—C11—H11B108.8C10—C21—H21C109.5
C12—C11—H11B108.8H21A—C21—H21C109.5
H11A—C11—H11B107.7H21B—C21—H21C109.5
C10—C1—C2—C31.2 (4)C8—C9—C11—C1251.8 (2)
C1—C2—C3—O1174.3 (3)C10—C9—C11—C12179.63 (17)
C1—C2—C3—C44.4 (4)C9—C11—C12—C1354.3 (2)
O1—C3—C4—C5174.4 (3)C11—C12—C13—C17168.19 (16)
C2—C3—C4—C54.3 (4)C11—C12—C13—C1456.8 (2)
C3—C4—C5—C6178.0 (2)C11—C12—C13—C2067.3 (2)
C3—C4—C5—C101.0 (4)C7—C8—C14—C1552.3 (2)
C4—C5—C6—C7121.5 (2)C9—C8—C14—C15173.83 (17)
C10—C5—C6—C755.8 (3)C7—C8—C14—C13178.48 (16)
C5—C6—C7—C854.0 (3)C9—C8—C14—C1360.0 (2)
C6—C7—C8—C14175.12 (18)C17—C13—C14—C8172.40 (16)
C6—C7—C8—C955.4 (2)C12—C13—C14—C863.3 (2)
C14—C8—C9—C1152.2 (2)C20—C13—C14—C859.1 (2)
C7—C8—C9—C11174.52 (17)C17—C13—C14—C1537.2 (2)
C14—C8—C9—C10178.41 (15)C12—C13—C14—C15161.49 (17)
C7—C8—C9—C1056.1 (2)C20—C13—C14—C1576.2 (2)
C2—C1—C10—C52.1 (3)C8—C14—C15—C16165.34 (18)
C2—C1—C10—C21117.7 (3)C13—C14—C15—C1634.8 (2)
C2—C1—C10—C9120.9 (2)C14—C15—C16—C1719.4 (3)
C4—C5—C10—C12.3 (3)C15—C16—C17—C18178.0 (2)
C6—C5—C10—C1174.97 (18)C15—C16—C17—C134.5 (3)
C4—C5—C10—C21116.3 (2)C12—C13—C17—C16141.8 (2)
C6—C5—C10—C2166.5 (2)C14—C13—C17—C1626.2 (2)
C4—C5—C10—C9122.6 (2)C20—C13—C17—C1692.0 (2)
C6—C5—C10—C954.6 (2)C12—C13—C17—C1844.5 (3)
C11—C9—C10—C156.5 (2)C14—C13—C17—C18160.17 (19)
C8—C9—C10—C1174.94 (16)C20—C13—C17—C1881.6 (2)
C11—C9—C10—C5177.80 (16)C16—C17—C18—O2168.9 (2)
C8—C9—C10—C553.7 (2)C13—C17—C18—O23.7 (3)
C11—C9—C10—C2162.4 (2)C16—C17—C18—C1911.1 (3)
C8—C9—C10—C2166.2 (2)C13—C17—C18—C19176.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O20.972.603.076 (3)111
C19—H19B···O1i0.962.573.356 (4)139
C21—H21A···O1ii0.962.593.537 (3)169
Symmetry codes: (i) x+5/2, y+1, z+1/2; (ii) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H26O2
Mr310.42
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)6.3625 (12), 11.745 (2), 23.007 (4)
V3)1719.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.999
No. of measured, independent and
observed [I > 2σ(I)] reflections
10912, 2274, 1871
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.102, 1.05
No. of reflections2274
No. of parameters212
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.13
Absolute structureSee text

Computer programs: APEX2 (Bruker, ????), SAINT (Bruker, 2003), SAINT, SHELXTL (Bruker, 2003), SHELXTL, PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19B···O1i0.962.573.356 (4)139
C21—H21A···O1ii0.962.593.537 (3)169
Symmetry codes: (i) x+5/2, y+1, z+1/2; (ii) x1/2, y+3/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds