Download citation
Download citation
link to html
The title compound, C12H6F6N2O3, belongs to a class of mesoionic compounds. The crystal packing exibits a short inter­molecular C(heterobicycle)...O(N-trifluoro­acet­yl) contact of 2.9573 (14) Å, which indicates the distribution of the positive charge in the N=C—O chain of the heterobicycle.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807036227/cv2282sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807036227/cv2282Isup2.hkl
Contains datablock I

CCDC reference: 657855

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • R factor = 0.048
  • wR factor = 0.110
  • Data-to-parameter ratio = 17.0

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

Earlier (Rybakov et al., 2002, 2006, 2007; Babaev et al., 2004, 2005), we described successful synthesis of new class of mesoionic compounds. Here we the title compound, (I), which belongs to this class.

The structure of the title compound is shown on Fig. 1. The main structural feature of this molecule is the difference in lengths of two C—O bonds in the oxazole ring, C3—O4 and C5—O4 of 1.3930 (12) and 1.3418 (12) Å, respectively. Additionally, the bond N1—C2 is longer than other two C—N bonds in the bicycle. These facts may demonstrate the separation of charges in the mesoionic system into two parts: N1 atom of the pyridine-2-one-like positively charged fragment and a negatively charged C2—C3—N30—C30—O30 unit. This conclusion also confirmed by relatively short interatomic contacts C2···O30i = 3.1842 (15) Å Å, N1···O30i = 3.1464 (14) Å and C5···O30i = 2.9573 (14)Å [symmetry code: (i) x + 1, y, z]. Interestingly, the group C10O10 seems to make a smaller contribution to the delocalization of the negative charge, since C10O10 bond length is relatively long [1.2293(10 Å].

Related literature top

For the crystal structures of related mesoionic compounds, see: Rybakov et al. (2002, 2006, 2007); Babaev et al. (2004, 2005).

Experimental top

The slurry of 3-methyl-N-(cyanomethyl)pyrid-2-one (3 g, 20.3 mmol) in 10 ml of acetonitrile was chilled to 228 K and then trifluoroacetic anhydride (10 ml, 15.1 g, 71.9 mmol) was added.

Immediately after addition the temperature of reaction mixture has risen to 263 K and then slowly decreased to 253 K. Reaction mixture was allowed to warm to RT. The formation of new precipitate was observed at 283 K. New precipitate was filtered off, washed with ether and dried. Mother liquor and ether washings were combined and, after staying overnight, new portion of product with identical mp was harvested. 7.17 g of 3,N-bis(trifluoroacetyl)-8-methyloxazolo[3,2-a]pyridinium-2-imidate was obtained. Yield 78%. Mp 485–487 K (decomp.).

1H-NMR spectrum: 9.62 (d, 1H, H5, J56 = 6.6 Hz), 8.18 (d, 1H, H7, J67 = 8.0 Hz), 7.74 (m, 1H, H6), 2.61 (s, 3H, 8-CH3).

Refinement top

C-bound H-atoms were placed in calculated positions (C—H 0.95–0.98 Å) and refined as riding, with Uiso(H) = 1.2–1.5Ueq(C).

Structure description top

Earlier (Rybakov et al., 2002, 2006, 2007; Babaev et al., 2004, 2005), we described successful synthesis of new class of mesoionic compounds. Here we the title compound, (I), which belongs to this class.

The structure of the title compound is shown on Fig. 1. The main structural feature of this molecule is the difference in lengths of two C—O bonds in the oxazole ring, C3—O4 and C5—O4 of 1.3930 (12) and 1.3418 (12) Å, respectively. Additionally, the bond N1—C2 is longer than other two C—N bonds in the bicycle. These facts may demonstrate the separation of charges in the mesoionic system into two parts: N1 atom of the pyridine-2-one-like positively charged fragment and a negatively charged C2—C3—N30—C30—O30 unit. This conclusion also confirmed by relatively short interatomic contacts C2···O30i = 3.1842 (15) Å Å, N1···O30i = 3.1464 (14) Å and C5···O30i = 2.9573 (14)Å [symmetry code: (i) x + 1, y, z]. Interestingly, the group C10O10 seems to make a smaller contribution to the delocalization of the negative charge, since C10O10 bond length is relatively long [1.2293(10 Å].

For the crystal structures of related mesoionic compounds, see: Rybakov et al. (2002, 2006, 2007); Babaev et al. (2004, 2005).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms presented as spheres with arbitrary radius.
[Figure 2] Fig. 2. Reaction scheme.
8-Methyl-3,N-bis(trifluoroacetyl)oxazolo[3,2-a]pyridinium-2-imidate top
Crystal data top
C12H6F6N2O3Z = 2
Mr = 340.19F(000) = 340
Triclinic, P1Dx = 1.850 Mg m3
Hall symbol: -P 1Melting point: 486 K
a = 4.7470 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.020 (2) ÅCell parameters from 1533 reflections
c = 13.121 (3) Åθ = 3.8–29.6°
α = 87.07 (2)°µ = 0.19 mm1
β = 85.54 (2)°T = 100 K
γ = 79.16 (2)°Needle, colourless
V = 610.7 (2) Å30.5 × 0.2 × 0.1 mm
Data collection top
Stoe IPDS
diffractometer
3033 reflections with I > 2σ(I)
Radiation source: Fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 30.0°, θmin = 1.6°
ω scansh = 66
3647 measured reflectionsk = 1414
3561 independent reflectionsl = 018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0886P)2]
where P = (Fo2 + 2Fc2)/3
3561 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C12H6F6N2O3γ = 79.16 (2)°
Mr = 340.19V = 610.7 (2) Å3
Triclinic, P1Z = 2
a = 4.7470 (9) ÅMo Kα radiation
b = 10.020 (2) ŵ = 0.19 mm1
c = 13.121 (3) ÅT = 100 K
α = 87.07 (2)°0.5 × 0.2 × 0.1 mm
β = 85.54 (2)°
Data collection top
Stoe IPDS
diffractometer
3033 reflections with I > 2σ(I)
3647 measured reflectionsRint = 0.026
3561 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.01Δρmax = 0.35 e Å3
3561 reflectionsΔρmin = 0.40 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.63108 (18)1.01569 (9)0.80548 (7)0.01191 (17)
C20.5589 (2)0.88933 (10)0.84072 (8)0.01249 (18)
C30.3972 (2)0.85223 (10)0.76503 (7)0.01096 (18)
N300.29280 (19)0.74182 (9)0.75789 (7)0.01295 (17)
C300.1122 (2)0.73232 (10)0.68501 (8)0.01211 (18)
O300.04146 (17)0.82058 (8)0.63682 (6)0.01681 (16)
C310.1051 (2)0.58336 (11)0.66086 (8)0.01484 (19)
F310.19537 (18)0.49207 (7)0.73456 (6)0.02482 (17)
F320.27332 (18)0.54922 (8)0.57639 (6)0.02720 (18)
F330.15873 (16)0.56834 (8)0.64277 (7)0.02651 (18)
O40.36896 (16)0.95558 (7)0.68932 (5)0.01205 (15)
C50.5181 (2)1.04911 (10)0.71396 (7)0.01127 (18)
C60.5524 (2)1.16465 (10)0.65525 (8)0.01351 (19)
C610.4264 (3)1.19068 (11)0.55323 (8)0.0187 (2)
H6110.23541.16600.55780.028*
H6120.55151.13570.50200.028*
H6130.40981.28730.53320.028*
C70.7143 (2)1.24746 (10)0.69715 (8)0.0158 (2)
H70.74541.32860.66100.019*
C80.8325 (2)1.21334 (11)0.79182 (9)0.0166 (2)
H80.94251.27160.81880.020*
C90.7914 (2)1.09688 (11)0.84605 (8)0.01452 (19)
H90.87221.07350.91000.017*
C100.6568 (2)0.82430 (10)0.93413 (7)0.01208 (18)
O100.77976 (18)0.87764 (9)0.99513 (6)0.01804 (17)
C110.6097 (2)0.67686 (11)0.96014 (8)0.01464 (19)
F110.33178 (15)0.66985 (7)0.97317 (5)0.01881 (15)
F120.73214 (15)0.59253 (7)0.88708 (5)0.01939 (15)
F130.72892 (16)0.63249 (7)1.04720 (5)0.02211 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0122 (4)0.0106 (4)0.0132 (4)0.0028 (3)0.0007 (3)0.0005 (3)
C20.0142 (4)0.0109 (4)0.0130 (4)0.0042 (3)0.0013 (3)0.0015 (3)
C30.0124 (4)0.0097 (4)0.0101 (4)0.0008 (3)0.0008 (3)0.0013 (3)
N300.0146 (4)0.0112 (4)0.0140 (4)0.0040 (3)0.0032 (3)0.0001 (3)
C300.0118 (4)0.0118 (4)0.0130 (4)0.0034 (3)0.0011 (3)0.0014 (3)
O300.0179 (4)0.0138 (3)0.0191 (4)0.0021 (3)0.0057 (3)0.0003 (3)
C310.0150 (4)0.0123 (4)0.0183 (4)0.0045 (3)0.0019 (3)0.0020 (3)
F310.0372 (4)0.0108 (3)0.0269 (4)0.0040 (3)0.0086 (3)0.0032 (3)
F320.0349 (4)0.0206 (4)0.0266 (4)0.0092 (3)0.0119 (3)0.0122 (3)
F330.0187 (3)0.0194 (3)0.0449 (5)0.0090 (3)0.0077 (3)0.0046 (3)
O40.0146 (3)0.0101 (3)0.0121 (3)0.0035 (2)0.0029 (2)0.0007 (2)
C50.0125 (4)0.0092 (4)0.0123 (4)0.0026 (3)0.0003 (3)0.0017 (3)
C60.0152 (4)0.0093 (4)0.0151 (4)0.0005 (3)0.0002 (3)0.0011 (3)
C610.0281 (5)0.0136 (5)0.0151 (5)0.0055 (4)0.0046 (4)0.0037 (4)
C70.0176 (4)0.0108 (4)0.0192 (5)0.0045 (3)0.0027 (4)0.0007 (3)
C80.0172 (4)0.0140 (4)0.0200 (5)0.0065 (3)0.0001 (4)0.0028 (4)
C90.0146 (4)0.0150 (4)0.0149 (4)0.0045 (3)0.0008 (3)0.0025 (3)
C100.0116 (4)0.0118 (4)0.0124 (4)0.0014 (3)0.0011 (3)0.0005 (3)
O100.0203 (4)0.0189 (4)0.0165 (4)0.0056 (3)0.0072 (3)0.0006 (3)
C110.0165 (4)0.0142 (4)0.0126 (4)0.0017 (3)0.0018 (3)0.0018 (3)
F110.0165 (3)0.0200 (3)0.0206 (3)0.0065 (2)0.0002 (2)0.0030 (2)
F120.0236 (3)0.0121 (3)0.0207 (3)0.0007 (2)0.0006 (3)0.0017 (2)
F130.0278 (4)0.0203 (3)0.0187 (3)0.0051 (3)0.0095 (3)0.0081 (3)
Geometric parameters (Å, º) top
N1—C51.3539 (13)C6—C71.3904 (15)
N1—C91.3654 (13)C6—C611.4994 (15)
N1—C21.4188 (13)C61—H6110.9800
C2—C31.4060 (14)C61—H6120.9800
C2—C101.4269 (13)C61—H6130.9800
C3—N301.3048 (13)C7—C81.4027 (15)
C3—O41.3930 (12)C7—H70.9500
N30—C301.3512 (13)C8—C91.3731 (15)
C30—O301.2190 (13)C8—H80.9500
C30—C311.5486 (15)C9—H90.9500
C31—F331.3300 (12)C10—O101.2250 (13)
C31—F321.3346 (13)C10—C111.5525 (15)
C31—F311.3350 (13)C11—F111.3314 (13)
O4—C51.3418 (12)C11—F131.3330 (12)
C5—C61.3858 (14)C11—F121.3350 (13)
C5···O30i2.9573 (14)C2···O30i3.1842 (15)
N1···O30i3.1464 (14)
C5—N1—C9120.67 (9)C7—C6—C61124.81 (9)
C5—N1—C2107.92 (8)C6—C61—H611109.5
C9—N1—C2131.37 (9)C6—C61—H612109.5
C3—C2—N1105.57 (8)H611—C61—H612109.5
C3—C2—C10133.05 (9)C6—C61—H613109.5
N1—C2—C10121.34 (9)H611—C61—H613109.5
N30—C3—O4122.04 (9)H612—C61—H613109.5
N30—C3—C2130.07 (9)C6—C7—C8121.19 (9)
O4—C3—C2107.85 (8)C6—C7—H7119.4
C3—N30—C30120.87 (9)C8—C7—H7119.4
O30—C30—N30130.63 (10)C9—C8—C7120.87 (10)
O30—C30—C31116.50 (9)C9—C8—H8119.6
N30—C30—C31112.87 (9)C7—C8—H8119.6
F33—C31—F32107.08 (9)N1—C9—C8118.14 (10)
F33—C31—F31107.14 (9)N1—C9—H9120.9
F32—C31—F31107.10 (9)C8—C9—H9120.9
F33—C31—C30111.25 (9)O10—C10—C2123.73 (10)
F32—C31—C30109.40 (9)O10—C10—C11117.61 (9)
F31—C31—C30114.52 (9)C2—C10—C11118.66 (9)
C5—O4—C3108.08 (8)F11—C11—F13107.55 (8)
O4—C5—N1110.48 (8)F11—C11—F12108.62 (9)
O4—C5—C6125.43 (9)F13—C11—F12107.90 (9)
N1—C5—C6124.09 (9)F11—C11—C10112.01 (9)
C5—C6—C7115.04 (10)F13—C11—C10109.26 (9)
C5—C6—C61120.12 (9)F12—C11—C10111.35 (8)
C5—N1—C2—C30.33 (11)C2—N1—C5—O42.26 (11)
C9—N1—C2—C3177.92 (10)C9—N1—C5—C60.22 (15)
C5—N1—C2—C10177.68 (9)C2—N1—C5—C6178.13 (9)
C9—N1—C2—C100.08 (16)O4—C5—C6—C7179.38 (9)
N1—C2—C3—N30175.92 (10)N1—C5—C6—C70.18 (14)
C10—C2—C3—N301.75 (19)O4—C5—C6—C612.32 (15)
N1—C2—C3—O41.62 (10)N1—C5—C6—C61178.12 (9)
C10—C2—C3—O4179.29 (10)C5—C6—C7—C80.32 (15)
O4—C3—N30—C3010.94 (15)C61—C6—C7—C8177.89 (10)
C2—C3—N30—C30171.82 (10)C6—C7—C8—C90.07 (16)
C3—N30—C30—O3022.33 (17)C5—N1—C9—C80.47 (14)
C3—N30—C30—C31157.68 (9)C2—N1—C9—C8177.81 (10)
O30—C30—C31—F3337.38 (13)C7—C8—C9—N10.33 (15)
N30—C30—C31—F33142.61 (9)C3—C2—C10—O10174.34 (11)
O30—C30—C31—F3280.73 (12)N1—C2—C10—O108.29 (16)
N30—C30—C31—F3299.28 (11)C3—C2—C10—C116.48 (17)
O30—C30—C31—F31159.06 (10)N1—C2—C10—C11170.89 (9)
N30—C30—C31—F3120.94 (12)O10—C10—C11—F11116.61 (10)
N30—C3—O4—C5174.77 (9)C2—C10—C11—F1164.16 (12)
C2—C3—O4—C53.01 (10)O10—C10—C11—F132.45 (13)
C3—O4—C5—N13.29 (10)C2—C10—C11—F13176.78 (9)
C3—O4—C5—C6177.10 (9)O10—C10—C11—F12121.54 (10)
C9—N1—C5—O4179.84 (8)C2—C10—C11—F1257.70 (12)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H6F6N2O3
Mr340.19
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)4.7470 (9), 10.020 (2), 13.121 (3)
α, β, γ (°)87.07 (2), 85.54 (2), 79.16 (2)
V3)610.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.5 × 0.2 × 0.1
Data collection
DiffractometerStoe IPDS
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3647, 3561, 3033
Rint0.026
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.110, 1.01
No. of reflections3561
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.40

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected interatomic distances (Å) top
C5···O30i2.9573 (14)C2···O30i3.1842 (15)
N1···O30i3.1464 (14)
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds