Download citation
Download citation
link to html
In the title complex, [Cu(C28H18N2O2)], the CuII atom is coordinated by two N [Cu—N = 1.913 (4) and 1.919 (4) Å] and two O [Cu—O = 1.872 (3) and 1.880 (3) Å] atoms from the o-phenyl­enebis(naphthalideneamine) ligand in a distorted square-planar geometry. Mol­ecules related by centres of symmetry separated by a b/2 translation form stacks along the b axis with shortest C...C distances of 3.284 (8) and 3.298 (7) Å. In these stacks, short Cu...Cu distances of 3.446 (3) Å are also observed in alternating pairs of mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807032709/cv2271sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807032709/cv2271Isup2.hkl
Contains datablock I

CCDC reference: 627868

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.057
  • wR factor = 0.102
  • Data-to-parameter ratio = 11.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (3) 2.71
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Schiff base complexes play an important role in coordination chemistry (Gamovski et al., 1993). In a continuation of a study of Schiff base ligands and their copper(II) complexes, we report here the title complex (Fig. 1), in which the Cu atom exists in a squareplanar geometry with the max deviation from the mean plane of 0.0713 Å. The Cu—N and Cu—O bond lengths are comparable to those observed in other copper(II) complexes (MacLachlan et al., 1996).

In the crystal, the molecules related by the centres of symmetry separated by the b/2 translation form stacks along the b axis with the short intermolecular distances C2···C20ii and C2···C12iii of 3.284 (8) and 3.298 (7) Å, respectively [symmetry codes: (ii) -x, 2 - y, -z; (iii) -x, 1 - y, -z]. In these stacks, the short Cu···Cuiii distances of 3.446 (3) Å are also observed in alternating pairs of the molecules. The weak intermolecular C—H···O hydrogen bonds (Table) contribute to the further packing stabilization.

Related literature top

For the general role of Schiff bases, see: Gamovski et al. (1993). For crystal structures of related complexes, see: MacLachlan et al. (1996).

Experimental top

o-Phenylenediamine(0.5 mmol, 54.11 mg) was dissolved in hot methanol (10 ml) and added dropwise to a methanol solution (5 ml) of 2- hydroxy-1-naphthaldehyde (1 mmol, 172.19 mg). The mixture was then stirred at 323 K for 2 h. An aqueous solution (2 ml) of copper(II) acetate hydrate (0.5 mmol, 99.86 mg) was then added dropwise and the mixture stirred for another 5 h. The solution was held at room temperature for about one week, whereupon red prism-shaped crystals suitable for X-ray diffraction analysis were obtained.

Refinement top

All H atoms were placed in geometrically idealized positions (C—H 0.93 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Schiff base complexes play an important role in coordination chemistry (Gamovski et al., 1993). In a continuation of a study of Schiff base ligands and their copper(II) complexes, we report here the title complex (Fig. 1), in which the Cu atom exists in a squareplanar geometry with the max deviation from the mean plane of 0.0713 Å. The Cu—N and Cu—O bond lengths are comparable to those observed in other copper(II) complexes (MacLachlan et al., 1996).

In the crystal, the molecules related by the centres of symmetry separated by the b/2 translation form stacks along the b axis with the short intermolecular distances C2···C20ii and C2···C12iii of 3.284 (8) and 3.298 (7) Å, respectively [symmetry codes: (ii) -x, 2 - y, -z; (iii) -x, 1 - y, -z]. In these stacks, the short Cu···Cuiii distances of 3.446 (3) Å are also observed in alternating pairs of the molecules. The weak intermolecular C—H···O hydrogen bonds (Table) contribute to the further packing stabilization.

For the general role of Schiff bases, see: Gamovski et al. (1993). For crystal structures of related complexes, see: MacLachlan et al. (1996).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
{1,1'-[o-Phenylenebis(nitrilomethylidyne)]di-2-naphtholato}copper(II) top
Crystal data top
[Cu(C28H18N2O2)]F(000) = 980
Mr = 477.98Dx = 1.575 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 16.019 (13) ÅCell parameters from 2054 reflections
b = 7.764 (6) Åθ = 2.9–27.9°
c = 16.334 (14) ŵ = 1.12 mm1
β = 97.042 (13)°T = 298 K
V = 2016 (3) Å3Prism, red
Z = 40.42 × 0.12 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3534 independent reflections
Radiation source: fine-focus sealed tube2081 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1819
Tmin = 0.652, Tmax = 0.946k = 99
8028 measured reflectionsl = 819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0237P)2]
where P = (Fo2 + 2Fc2)/3
3534 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Cu(C28H18N2O2)]V = 2016 (3) Å3
Mr = 477.98Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.019 (13) ŵ = 1.12 mm1
b = 7.764 (6) ÅT = 298 K
c = 16.334 (14) Å0.42 × 0.12 × 0.05 mm
β = 97.042 (13)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3534 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2081 reflections with I > 2σ(I)
Tmin = 0.652, Tmax = 0.946Rint = 0.082
8028 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.00Δρmax = 0.33 e Å3
3534 reflectionsΔρmin = 0.42 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.04588 (3)0.67783 (8)0.05014 (3)0.03463 (19)
N10.0368 (2)0.5873 (5)0.1135 (2)0.0304 (10)
N20.0482 (2)0.7732 (5)0.0191 (2)0.0311 (10)
O10.13543 (17)0.5793 (4)0.11874 (18)0.0366 (9)
O20.12563 (17)0.7745 (4)0.01174 (18)0.0431 (10)
C10.0211 (3)0.5039 (7)0.1831 (3)0.0336 (12)
H10.06710.47320.20970.040*
C20.0598 (3)0.4557 (6)0.2222 (3)0.0319 (12)
C30.1330 (3)0.4951 (6)0.1868 (3)0.0328 (12)
C40.2121 (3)0.4396 (7)0.2281 (3)0.0432 (14)
H40.26050.46080.20360.052*
C50.2192 (3)0.3577 (7)0.3012 (3)0.0412 (14)
H50.27220.32650.32650.049*
C60.1477 (3)0.3183 (7)0.3404 (3)0.0356 (12)
C70.0668 (3)0.3674 (6)0.3018 (3)0.0333 (12)
C80.0016 (3)0.3251 (8)0.3444 (3)0.0448 (13)
H80.05570.35460.32130.054*
C90.0089 (3)0.2416 (7)0.4192 (3)0.0552 (17)
H90.03750.21700.44630.066*
C100.0890 (3)0.1940 (8)0.4543 (3)0.0519 (15)
H100.09560.13510.50420.062*
C110.1574 (3)0.2319 (7)0.4169 (3)0.0453 (15)
H110.21080.20120.44150.054*
C120.0430 (3)0.8604 (6)0.0863 (3)0.0330 (12)
H120.09340.89690.11540.040*
C130.0317 (3)0.9054 (6)0.1198 (3)0.0317 (12)
C140.1123 (3)0.8555 (7)0.0810 (3)0.0350 (13)
C150.1849 (3)0.8980 (7)0.1200 (3)0.0465 (16)
H150.23760.86020.09650.056*
C160.1787 (3)0.9919 (7)0.1900 (3)0.0432 (14)
H160.22741.01850.21310.052*
C170.0997 (3)1.0516 (7)0.2298 (3)0.0384 (13)
C180.0255 (3)1.0059 (7)0.1964 (3)0.0350 (13)
C190.0513 (3)1.0648 (7)0.2389 (3)0.0418 (14)
H190.10141.03590.21900.050*
C200.0540 (3)1.1632 (8)0.3086 (3)0.0482 (14)
H200.10571.19840.33560.058*
C210.0196 (3)1.2111 (7)0.3396 (3)0.0511 (16)
H210.01751.28080.38610.061*
C220.0946 (3)1.1549 (7)0.3012 (3)0.0448 (14)
H220.14381.18540.32250.054*
C230.1208 (3)0.6324 (6)0.0809 (3)0.0307 (12)
C240.1263 (3)0.7353 (6)0.0086 (3)0.0320 (13)
C250.2044 (3)0.7904 (7)0.0266 (3)0.0416 (14)
H250.20850.85880.07370.050*
C260.2761 (3)0.7462 (7)0.0064 (3)0.0475 (16)
H260.32840.78390.01810.057*
C270.2700 (3)0.6452 (7)0.0765 (3)0.0485 (15)
H270.31840.61620.09960.058*
C280.1933 (3)0.5872 (7)0.1123 (3)0.0417 (14)
H280.19040.51630.15840.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0257 (3)0.0397 (4)0.0389 (3)0.0006 (3)0.0054 (2)0.0010 (4)
N10.024 (2)0.032 (3)0.035 (2)0.0032 (18)0.0045 (18)0.001 (2)
N20.025 (2)0.035 (3)0.033 (2)0.0033 (18)0.0060 (17)0.0003 (19)
O10.0248 (18)0.044 (3)0.0412 (18)0.0052 (15)0.0047 (15)0.0049 (17)
O20.0286 (18)0.057 (3)0.0448 (19)0.0001 (16)0.0087 (15)0.0111 (18)
C10.028 (3)0.038 (4)0.037 (3)0.004 (2)0.011 (2)0.004 (3)
C20.026 (3)0.034 (3)0.036 (3)0.002 (2)0.005 (2)0.003 (2)
C30.028 (3)0.031 (3)0.040 (3)0.002 (2)0.007 (2)0.008 (3)
C40.023 (3)0.052 (4)0.055 (3)0.001 (2)0.008 (2)0.005 (3)
C50.027 (3)0.041 (4)0.053 (3)0.002 (3)0.002 (2)0.001 (3)
C60.033 (3)0.034 (3)0.041 (3)0.000 (3)0.005 (2)0.002 (3)
C70.034 (3)0.027 (4)0.039 (3)0.003 (2)0.007 (2)0.007 (2)
C80.031 (3)0.061 (4)0.043 (3)0.004 (3)0.004 (2)0.004 (3)
C90.044 (3)0.071 (5)0.052 (3)0.007 (3)0.011 (3)0.009 (3)
C100.047 (3)0.068 (5)0.041 (3)0.001 (3)0.007 (3)0.009 (3)
C110.040 (3)0.048 (4)0.047 (3)0.006 (3)0.001 (3)0.007 (3)
C120.025 (3)0.037 (4)0.037 (3)0.001 (2)0.003 (2)0.012 (3)
C130.029 (3)0.036 (3)0.030 (3)0.005 (2)0.004 (2)0.006 (2)
C140.029 (3)0.039 (4)0.039 (3)0.003 (2)0.007 (2)0.003 (3)
C150.027 (3)0.067 (5)0.048 (3)0.004 (3)0.015 (2)0.000 (3)
C160.030 (3)0.058 (4)0.046 (3)0.002 (3)0.021 (2)0.007 (3)
C170.039 (3)0.040 (4)0.037 (3)0.000 (3)0.012 (2)0.010 (3)
C180.038 (3)0.036 (4)0.032 (3)0.004 (3)0.010 (2)0.013 (2)
C190.036 (3)0.050 (4)0.041 (3)0.001 (3)0.009 (2)0.002 (3)
C200.047 (3)0.052 (4)0.045 (3)0.006 (3)0.003 (3)0.000 (3)
C210.065 (4)0.050 (5)0.040 (3)0.004 (3)0.012 (3)0.003 (3)
C220.050 (3)0.048 (4)0.041 (3)0.008 (3)0.023 (2)0.006 (3)
C230.019 (2)0.035 (4)0.037 (3)0.003 (2)0.003 (2)0.004 (2)
C240.024 (3)0.037 (4)0.036 (3)0.000 (2)0.005 (2)0.007 (2)
C250.029 (3)0.056 (4)0.039 (3)0.001 (3)0.000 (2)0.010 (3)
C260.027 (3)0.067 (5)0.047 (3)0.002 (3)0.001 (2)0.003 (3)
C270.027 (3)0.068 (5)0.052 (3)0.005 (3)0.010 (2)0.004 (3)
C280.026 (3)0.051 (4)0.048 (3)0.005 (2)0.006 (2)0.004 (3)
Geometric parameters (Å, º) top
Cu1—O11.872 (3)C12—C131.419 (6)
Cu1—O21.880 (3)C12—H120.9300
Cu1—N11.913 (4)C13—C141.421 (6)
Cu1—N21.919 (4)C13—C181.467 (6)
N1—C11.306 (5)C14—C151.431 (6)
N1—C231.428 (5)C15—C161.350 (6)
N2—C121.300 (5)C15—H150.9300
N2—C241.413 (5)C16—C171.427 (6)
O1—C31.295 (5)C16—H160.9300
O2—C141.289 (5)C17—C221.410 (6)
C1—C21.422 (6)C17—C181.413 (6)
C1—H10.9300C18—C191.413 (6)
C2—C31.404 (6)C19—C201.367 (6)
C2—C71.463 (6)C19—H190.9300
C3—C41.426 (6)C20—C211.390 (6)
C4—C51.346 (6)C20—H200.9300
C4—H40.9300C21—C221.358 (6)
C5—C61.412 (6)C21—H210.9300
C5—H50.9300C22—H220.9300
C6—C111.409 (6)C23—C281.372 (6)
C6—C71.423 (6)C23—C241.419 (6)
C7—C81.407 (6)C24—C251.380 (5)
C8—C91.375 (6)C25—C261.372 (6)
C8—H80.9300C25—H250.9300
C9—C101.388 (6)C26—C271.381 (6)
C9—H90.9300C26—H260.9300
C10—C111.352 (6)C27—C281.370 (6)
C10—H100.9300C27—H270.9300
C11—H110.9300C28—H280.9300
O1—Cu1—O287.91 (14)C13—C12—H12116.6
O1—Cu1—N193.25 (15)C12—C13—C14121.6 (4)
O2—Cu1—N1178.02 (17)C12—C13—C18119.2 (4)
O1—Cu1—N2178.18 (16)C14—C13—C18119.2 (4)
O2—Cu1—N293.75 (16)O2—C14—C13124.6 (4)
N1—Cu1—N285.10 (17)O2—C14—C15116.6 (4)
C1—N1—C23121.2 (4)C13—C14—C15118.8 (4)
C1—N1—Cu1125.5 (3)C16—C15—C14121.5 (5)
C23—N1—Cu1113.0 (3)C16—C15—H15119.3
C12—N2—C24122.0 (4)C14—C15—H15119.3
C12—N2—Cu1124.8 (3)C15—C16—C17122.0 (5)
C24—N2—Cu1113.1 (3)C15—C16—H16119.0
C3—O1—Cu1128.3 (3)C17—C16—H16119.0
C14—O2—Cu1128.1 (3)C22—C17—C18119.8 (5)
N1—C1—C2126.1 (4)C22—C17—C16121.3 (5)
N1—C1—H1117.0C18—C17—C16118.9 (5)
C2—C1—H1117.0C17—C18—C19116.9 (5)
C3—C2—C1121.3 (4)C17—C18—C13119.4 (4)
C3—C2—C7119.4 (4)C19—C18—C13123.7 (4)
C1—C2—C7119.2 (4)C20—C19—C18121.8 (5)
O1—C3—C2125.3 (4)C20—C19—H19119.1
O1—C3—C4116.1 (4)C18—C19—H19119.1
C2—C3—C4118.6 (4)C19—C20—C21120.7 (5)
C5—C4—C3122.4 (5)C19—C20—H20119.6
C5—C4—H4118.8C21—C20—H20119.6
C3—C4—H4118.8C22—C21—C20119.2 (5)
C4—C5—C6121.4 (4)C22—C21—H21120.4
C4—C5—H5119.3C20—C21—H21120.4
C6—C5—H5119.3C21—C22—C17121.5 (5)
C11—C6—C5119.8 (4)C21—C22—H22119.2
C11—C6—C7121.1 (4)C17—C22—H22119.2
C5—C6—C7119.1 (4)C28—C23—C24119.0 (4)
C8—C7—C6116.2 (4)C28—C23—N1126.9 (4)
C8—C7—C2124.7 (4)C24—C23—N1114.1 (4)
C6—C7—C2119.1 (4)C25—C24—N2126.5 (4)
C9—C8—C7122.1 (4)C25—C24—C23118.8 (4)
C9—C8—H8119.0N2—C24—C23114.6 (4)
C7—C8—H8119.0C26—C25—C24121.3 (5)
C8—C9—C10119.9 (5)C26—C25—H25119.4
C8—C9—H9120.0C24—C25—H25119.4
C10—C9—H9120.0C25—C26—C27119.4 (5)
C11—C10—C9121.0 (5)C25—C26—H26120.3
C11—C10—H10119.5C27—C26—H26120.3
C9—C10—H10119.5C28—C27—C26120.6 (5)
C10—C11—C6119.8 (5)C28—C27—H27119.7
C10—C11—H11120.1C26—C27—H27119.7
C6—C11—H11120.1C27—C28—C23120.9 (5)
N2—C12—C13126.8 (4)C27—C28—H28119.6
N2—C12—H12116.6C23—C28—H28119.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.523.326 (6)145
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C28H18N2O2)]
Mr477.98
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)16.019 (13), 7.764 (6), 16.334 (14)
β (°) 97.042 (13)
V3)2016 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.12
Crystal size (mm)0.42 × 0.12 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.652, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
8028, 3534, 2081
Rint0.082
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.102, 1.00
No. of reflections3534
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.42

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.523.326 (6)145
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds