Download citation
Download citation
link to html
In the title mol­ecule, C23H17N3O2, intra­molecular O—H...O and N—H...N hydrogen bonds influence the mol­ecular conformation. In the crystal structure, π–π inter­actions, with a distance of 3.611 (5) Å between the centroids of rings in neighbouring naphthalene rings, link the mol­ecules into centrosymmetric dimers, and C—H...π inter­actions link the dimers into chains running in the [101] direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680703036X/cv2265sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680703036X/cv2265Isup2.hkl
Contains datablock I

CCDC reference: 634512

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.045
  • wR factor = 0.152
  • Data-to-parameter ratio = 12.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ?
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The chemistry of aroylhydrazones has gained a special attraction due to their coordination abilities to metal ions (Bai et al., 2005) and their biological activities (Mostafa & Haifaa, 2007). As an extension of our work on the structural characterization of aroylhydrazone derivatives (Liu et al., 2005), the title compound, (I), was synthesized and characterized.

In the title compound, the C1—O1 bond length is 1.228 (3) Å, indicating that the molecule is in the keto form. The bond distances and angles in (I) are normal. The three mean planes - naphthalene bicycle (A), benzene ring (B) and pyridine ring (C), make the following dihedral angles - A/B 75.7 (1)°, B/C 57.5 (1)° and A/C 25.1 (1)°. There are two intramolecular O2—H···O1 and N1—H···N3 hydrogen bonds (Table 1 and Fig. 1).

The π···π interactions - proved by short distance Cg1···Cg2i of 3.611 (5) Å - link the molecules into centrosymmetric dimers [Cg1 and Cg2 are centroids of C2—C7 and C6—C11, respectively; symmetry code: (i) 1 - x, 1 - y, 2 - z]. The C—H···π interactions - C23—H23···Cg3ii 2.63 Å, 149°; Cg3 is a centroid of N3/C13—C17 [symmetry code: (ii) -x, 1 - y, 1 - z] - link dimers into chains running in direction [101] (Fig. 2).

Related literature top

For the crystal structure of a Ni complex with a related aroylhydrazone derivative, see: Liu et al. (2005). For general background, see Bai et al. (2005); for the specific biological activities of aroylhydrazones, see Mostafa & Haifaa (2007).

Experimental top

A solution of 2-benzoylpyridine (2.56 g, 14 mmol) in ethanol (10 ml) was added to a solution of 2-hydroxy-3-naphthoylhydrazine (2.02 g, 10 mmol) in ethanol (10 ml). The mixture was refluxed for 3 h, and then the precipitate was collected, washed several times with ethanol and dried in vacuo (yield 80%). A dichloromethane solution of the title compound was slowly evaporated and yellow crystal for X-ray diffraction was obtained after two weeks (m.p. 475–476 K). Analysis calculated for C23H17N3O2: C 75.19, H 4.67, N 11.44%; found: C 75.01, H 4.49, N 11.31%.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H 0.86 Å, O—H 0.82 Å and C—H 0.93 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2Ueq(C, N) and Uiso(H) = 1.5Ueq(O).

Structure description top

The chemistry of aroylhydrazones has gained a special attraction due to their coordination abilities to metal ions (Bai et al., 2005) and their biological activities (Mostafa & Haifaa, 2007). As an extension of our work on the structural characterization of aroylhydrazone derivatives (Liu et al., 2005), the title compound, (I), was synthesized and characterized.

In the title compound, the C1—O1 bond length is 1.228 (3) Å, indicating that the molecule is in the keto form. The bond distances and angles in (I) are normal. The three mean planes - naphthalene bicycle (A), benzene ring (B) and pyridine ring (C), make the following dihedral angles - A/B 75.7 (1)°, B/C 57.5 (1)° and A/C 25.1 (1)°. There are two intramolecular O2—H···O1 and N1—H···N3 hydrogen bonds (Table 1 and Fig. 1).

The π···π interactions - proved by short distance Cg1···Cg2i of 3.611 (5) Å - link the molecules into centrosymmetric dimers [Cg1 and Cg2 are centroids of C2—C7 and C6—C11, respectively; symmetry code: (i) 1 - x, 1 - y, 2 - z]. The C—H···π interactions - C23—H23···Cg3ii 2.63 Å, 149°; Cg3 is a centroid of N3/C13—C17 [symmetry code: (ii) -x, 1 - y, 1 - z] - link dimers into chains running in direction [101] (Fig. 2).

For the crystal structure of a Ni complex with a related aroylhydrazone derivative, see: Liu et al. (2005). For general background, see Bai et al. (2005); for the specific biological activities of aroylhydrazones, see Mostafa & Haifaa (2007).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT? (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Crystal packing of the title compound.
3-Hydroxy-N'-[phenyl(2-pyridyl)methylene]-2-naphthohydrazide top
Crystal data top
C23H17N3O2F(000) = 768
Mr = 367.40Dx = 1.350 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 13.9214 (18) ÅCell parameters from 1775 reflections
b = 17.238 (2) Åθ = 2.4–22.8°
c = 7.7751 (16) ŵ = 0.09 mm1
β = 104.294 (2)°T = 293 K
V = 1808.0 (5) Å3Block, yellow
Z = 40.38 × 0.30 × 0.28 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3185 independent reflections
Radiation source: fine-focus sealed tube1695 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1613
Tmin = 0.967, Tmax = 0.976k = 2019
9307 measured reflectionsl = 89
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.3761P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3185 reflectionsΔρmax = 0.22 e Å3
254 parametersΔρmin = 0.20 e Å3
1 restraintExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0079 (14)
Crystal data top
C23H17N3O2V = 1808.0 (5) Å3
Mr = 367.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9214 (18) ŵ = 0.09 mm1
b = 17.238 (2) ÅT = 293 K
c = 7.7751 (16) Å0.38 × 0.30 × 0.28 mm
β = 104.294 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3185 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1695 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.976Rint = 0.040
9307 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0451 restraint
wR(F2) = 0.152H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
3185 reflectionsΔρmin = 0.20 e Å3
254 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.12667 (15)0.45180 (13)0.8333 (3)0.0502 (7)
H10.12750.50070.85510.060*
N20.04182 (16)0.41633 (12)0.7402 (3)0.0475 (6)
N30.01643 (16)0.57354 (13)0.8659 (3)0.0506 (6)
O10.21182 (14)0.33844 (12)0.8614 (3)0.0826 (8)
O20.35617 (16)0.32793 (12)1.1398 (4)0.0933 (9)
H20.30470.31401.07020.140*
C10.2092 (2)0.40821 (17)0.8904 (4)0.0546 (8)
C20.3136 (2)0.52678 (16)0.9791 (4)0.0520 (8)
H2A0.26770.55530.89560.062*
C30.29691 (18)0.44932 (16)0.9980 (4)0.0494 (8)
C40.3682 (2)0.40554 (17)1.1233 (5)0.0624 (9)
C50.4488 (2)0.44150 (19)1.2260 (5)0.0668 (10)
H50.49410.41251.30920.080*
C60.4661 (2)0.52093 (18)1.2106 (4)0.0554 (8)
C70.39797 (19)0.56455 (16)1.0821 (4)0.0505 (8)
C80.4168 (2)0.64417 (17)1.0631 (5)0.0625 (9)
H80.37290.67320.97780.075*
C90.4980 (2)0.6791 (2)1.1672 (5)0.0734 (11)
H90.50920.73171.15300.088*
C100.5644 (2)0.6364 (2)1.2949 (5)0.0806 (12)
H100.61960.66081.36640.097*
C110.5499 (2)0.5599 (2)1.3165 (5)0.0748 (11)
H110.59550.53231.40230.090*
C120.0393 (2)0.45569 (15)0.6996 (4)0.0440 (7)
C130.05324 (19)0.53912 (15)0.7360 (4)0.0449 (7)
C140.1321 (2)0.58120 (17)0.6364 (4)0.0568 (8)
H140.17950.55690.54740.068*
C150.1403 (2)0.65894 (18)0.6692 (5)0.0677 (10)
H150.19270.68770.60180.081*
C160.0705 (2)0.69346 (17)0.8019 (5)0.0641 (9)
H160.07480.74590.82700.077*
C170.0057 (2)0.64892 (16)0.8969 (4)0.0571 (8)
H170.05260.67240.98810.069*
C180.1255 (2)0.40909 (15)0.6010 (4)0.0463 (7)
C190.2175 (2)0.41381 (17)0.6401 (4)0.0575 (8)
H190.22660.44820.72690.069*
C200.2955 (2)0.3681 (2)0.5517 (5)0.0666 (10)
H200.35640.37100.58050.080*
C210.2828 (3)0.31836 (19)0.4211 (5)0.0687 (10)
H210.33590.28880.35880.082*
C220.1918 (2)0.31210 (17)0.3818 (4)0.0632 (9)
H220.18310.27770.29480.076*
C230.1137 (2)0.35729 (16)0.4726 (4)0.0519 (8)
H230.05220.35270.44670.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0443 (14)0.0329 (13)0.0666 (17)0.0022 (11)0.0006 (12)0.0055 (11)
N20.0420 (13)0.0396 (13)0.0570 (16)0.0049 (11)0.0047 (12)0.0039 (11)
N30.0577 (15)0.0356 (14)0.0547 (16)0.0026 (11)0.0069 (12)0.0014 (11)
O10.0583 (14)0.0381 (13)0.139 (2)0.0034 (10)0.0011 (14)0.0161 (13)
O20.0683 (15)0.0448 (14)0.148 (3)0.0037 (11)0.0087 (16)0.0215 (14)
C10.0452 (17)0.0375 (17)0.077 (2)0.0031 (14)0.0072 (16)0.0013 (15)
C20.0454 (17)0.0410 (17)0.064 (2)0.0032 (13)0.0027 (15)0.0027 (14)
C30.0398 (16)0.0376 (16)0.066 (2)0.0041 (13)0.0041 (15)0.0038 (14)
C40.0448 (17)0.0416 (18)0.094 (3)0.0037 (14)0.0048 (17)0.0046 (17)
C50.0468 (18)0.058 (2)0.085 (3)0.0122 (16)0.0047 (17)0.0078 (18)
C60.0415 (17)0.0525 (19)0.068 (2)0.0050 (14)0.0054 (16)0.0070 (16)
C70.0421 (16)0.0421 (17)0.065 (2)0.0011 (14)0.0092 (15)0.0101 (15)
C80.057 (2)0.0463 (19)0.079 (2)0.0025 (15)0.0065 (18)0.0070 (17)
C90.058 (2)0.053 (2)0.107 (3)0.0092 (17)0.016 (2)0.022 (2)
C100.048 (2)0.073 (3)0.110 (3)0.0059 (19)0.000 (2)0.033 (2)
C110.0466 (19)0.076 (3)0.091 (3)0.0047 (17)0.0037 (18)0.017 (2)
C120.0446 (16)0.0376 (16)0.0476 (18)0.0017 (13)0.0075 (14)0.0010 (13)
C130.0437 (16)0.0380 (16)0.0522 (19)0.0011 (13)0.0102 (14)0.0019 (13)
C140.0504 (17)0.0480 (19)0.068 (2)0.0001 (15)0.0065 (16)0.0015 (15)
C150.058 (2)0.051 (2)0.087 (3)0.0103 (16)0.0052 (19)0.0064 (18)
C160.071 (2)0.0383 (17)0.085 (3)0.0091 (16)0.023 (2)0.0006 (17)
C170.068 (2)0.0374 (17)0.062 (2)0.0037 (15)0.0086 (17)0.0045 (15)
C180.0444 (17)0.0389 (16)0.0519 (19)0.0017 (13)0.0049 (14)0.0041 (14)
C190.0470 (18)0.058 (2)0.065 (2)0.0032 (15)0.0102 (16)0.0014 (16)
C200.0471 (19)0.072 (2)0.078 (3)0.0076 (17)0.0105 (18)0.010 (2)
C210.061 (2)0.060 (2)0.072 (3)0.0209 (17)0.0093 (19)0.0147 (19)
C220.075 (2)0.0451 (19)0.060 (2)0.0087 (16)0.0004 (18)0.0025 (15)
C230.0524 (18)0.0420 (17)0.058 (2)0.0021 (14)0.0076 (15)0.0015 (15)
Geometric parameters (Å, º) top
N1—C11.352 (3)C10—C111.351 (5)
N1—N21.368 (3)C10—H100.9300
N1—H10.8600C11—H110.9300
N2—C121.288 (3)C12—C131.488 (4)
N3—C171.337 (3)C12—C181.489 (4)
N3—C131.353 (3)C13—C141.382 (4)
O1—C11.226 (3)C14—C151.374 (4)
O2—C41.358 (3)C14—H140.9300
O2—H20.8200C15—C161.366 (4)
C1—C31.480 (4)C15—H150.9300
C2—C31.369 (4)C16—C171.369 (4)
C2—C71.408 (4)C16—H160.9300
C2—H2A0.9300C17—H170.9300
C3—C41.423 (4)C18—C231.379 (4)
C4—C51.356 (4)C18—C191.389 (4)
C5—C61.400 (4)C19—C201.380 (4)
C5—H50.9300C19—H190.9300
C6—C71.412 (4)C20—C211.374 (5)
C6—C111.420 (4)C20—H200.9300
C7—C81.412 (4)C21—C221.378 (4)
C8—C91.358 (4)C21—H210.9300
C8—H80.9300C22—C231.382 (4)
C9—C101.389 (5)C22—H220.9300
C9—H90.9300C23—H230.9300
C1—N1—N2118.5 (2)C6—C11—H11119.5
C1—N1—H1120.7N2—C12—C13127.6 (2)
N2—N1—H1120.7N2—C12—C18112.9 (2)
C12—N2—N1119.0 (2)C13—C12—C18119.5 (2)
C17—N3—C13118.0 (2)N3—C13—C14120.8 (3)
C4—O2—H2109.5N3—C13—C12117.6 (2)
O1—C1—N1123.1 (3)C14—C13—C12121.6 (3)
O1—C1—C3121.0 (2)C15—C14—C13119.9 (3)
N1—C1—C3115.8 (2)C15—C14—H14120.0
C3—C2—C7122.0 (3)C13—C14—H14120.0
C3—C2—H2A119.0C16—C15—C14119.3 (3)
C7—C2—H2A119.0C16—C15—H15120.4
C2—C3—C4118.9 (3)C14—C15—H15120.4
C2—C3—C1123.0 (2)C15—C16—C17118.4 (3)
C4—C3—C1118.1 (3)C15—C16—H16120.8
C5—C4—O2119.9 (3)C17—C16—H16120.8
C5—C4—C3119.8 (3)N3—C17—C16123.6 (3)
O2—C4—C3120.4 (3)N3—C17—H17118.2
C4—C5—C6122.1 (3)C16—C17—H17118.2
C4—C5—H5119.0C23—C18—C19118.5 (3)
C6—C5—H5119.0C23—C18—C12119.8 (3)
C5—C6—C7118.8 (3)C19—C18—C12121.7 (3)
C5—C6—C11123.1 (3)C20—C19—C18120.8 (3)
C7—C6—C11118.1 (3)C20—C19—H19119.6
C2—C7—C8122.7 (3)C18—C19—H19119.6
C2—C7—C6118.5 (3)C21—C20—C19119.7 (3)
C8—C7—C6118.8 (3)C21—C20—H20120.1
C9—C8—C7121.2 (3)C19—C20—H20120.1
C9—C8—H8119.4C20—C21—C22120.3 (3)
C7—C8—H8119.4C20—C21—H21119.8
C8—C9—C10120.0 (3)C22—C21—H21119.8
C8—C9—H9120.0C21—C22—C23119.6 (3)
C10—C9—H9120.0C21—C22—H22120.2
C11—C10—C9120.9 (3)C23—C22—H22120.2
C11—C10—H10119.6C18—C23—C22121.0 (3)
C9—C10—H10119.6C18—C23—H23119.5
C10—C11—C6121.1 (3)C22—C23—H23119.5
C10—C11—H11119.5
C1—N1—N2—C12173.6 (3)C5—C6—C11—C10178.8 (3)
N2—N1—C1—O10.6 (5)C7—C6—C11—C100.3 (5)
N2—N1—C1—C3177.0 (2)N1—N2—C12—C132.5 (4)
C7—C2—C3—C41.2 (5)N1—N2—C12—C18179.1 (2)
C7—C2—C3—C1179.5 (3)C17—N3—C13—C141.2 (4)
O1—C1—C3—C2153.4 (3)C17—N3—C13—C12178.5 (3)
N1—C1—C3—C228.9 (4)N2—C12—C13—N320.4 (4)
O1—C1—C3—C424.9 (5)C18—C12—C13—N3161.4 (3)
N1—C1—C3—C4152.8 (3)N2—C12—C13—C14157.0 (3)
C2—C3—C4—C52.5 (5)C18—C12—C13—C1421.3 (4)
C1—C3—C4—C5179.1 (3)N3—C13—C14—C150.1 (4)
C2—C3—C4—O2177.0 (3)C12—C13—C14—C15177.3 (3)
C1—C3—C4—O21.3 (5)C13—C14—C15—C160.7 (5)
O2—C4—C5—C6178.1 (3)C14—C15—C16—C170.4 (5)
C3—C4—C5—C61.4 (5)C13—N3—C17—C161.6 (5)
C4—C5—C6—C71.0 (5)C15—C16—C17—N30.8 (5)
C4—C5—C6—C11179.9 (3)N2—C12—C18—C2340.3 (4)
C3—C2—C7—C8179.3 (3)C13—C12—C18—C23138.2 (3)
C3—C2—C7—C61.1 (4)N2—C12—C18—C19136.9 (3)
C5—C6—C7—C22.2 (4)C13—C12—C18—C1944.6 (4)
C11—C6—C7—C2178.6 (3)C23—C18—C19—C200.4 (4)
C5—C6—C7—C8178.2 (3)C12—C18—C19—C20177.6 (3)
C11—C6—C7—C80.9 (4)C18—C19—C20—C211.3 (5)
C2—C7—C8—C9178.7 (3)C19—C20—C21—C222.1 (5)
C6—C7—C8—C90.9 (5)C20—C21—C22—C231.2 (5)
C7—C8—C9—C100.2 (5)C19—C18—C23—C221.3 (4)
C8—C9—C10—C110.5 (6)C12—C18—C23—C22178.6 (3)
C9—C10—C11—C60.4 (6)C21—C22—C23—C180.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.862.571 (3)145
N1—H1···N30.862.012.648 (3)130
C23—H23···Cgi0.932.633.460 (7)147
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC23H17N3O2
Mr367.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.9214 (18), 17.238 (2), 7.7751 (16)
β (°) 104.294 (2)
V3)1808.0 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.38 × 0.30 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
9307, 3185, 1695
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.152, 1.01
No. of reflections3185
No. of parameters254
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.20

Computer programs: SMART (Siemens, 1996), SMART, SAINT? (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.862.571 (3)145
N1—H1···N30.862.012.648 (3)130
C23—H23···Cgi0.932.633.460 (7)147
Symmetry code: (i) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds