research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of lutetium aluminate (LUAM), Lu4Al2O9

CROSSMARK_Color_square_no_text.svg

aInstitute of Multidisciplinary Research for Advanced Materials, Tohoku, University, 2-1-1 Katahira, Aoba-ku, Sendai, 980- 8577, Japan
*Correspondence e-mail: ray@tohoku.ac.jp

Edited by A. M. Chippindale, University of Reading, England (Received 13 April 2020; accepted 26 April 2020; online 30 April 2020)

The crystal structure of the title compound containing lutetium, the last element in the lanthanide series, was determined using a single crystal prepared by heating a pressed pellet of a 2:1 molar ratio mixture of Lu2O3 and Al2O3 powders in an Ar atmosphere at 2173 K for 4 h. Lu4Al2O9 is isostructural with Eu4Al2O9 and composed of Al2O7 di­tetra­hedra and Lu-centered six- and sevenfold oxygen polyhedra. The unit-cell volume, 787.3 (3) Å3, is the smallest among the volumes of the rare-earth (RE) aluminates, RE4Al2O9. The crystal studied was refined as a two-component pseudo-merohedric twin.

1. Chemical context

In the Al2O3-Lu2O3 system, where Lu has the largest atomic number among the rare-earth elements (RE), the following three phases have been reported: Lu3Al5O12, LuAlO3, and Lu4Al2O9. These phases have been actively investigated as host materials, not only for phosphors (Ding et al., 2011[Ding, L., Zhang, Q., Luo, J., Liu, W., Zhou, W. & Yin, S. (2011). J. Alloys Compd. 509, 10167-10171.]; Xiang et al., 2016[Xiang, R., Liang, X., Li, P., Di, X. & Xiang, W. (2016). Chem. Eng. J. 306, 858-865.]; Wang et al., 2018[Wang, Z., Zou, J., Zhang, C., Yang, B., Shi, M., Li, Y., Zhou, H., Liu, Y., Li, M. & Liu, Z. (2018). J. Non-Cryst. Solids, 489, 57-63.]), but also for scintillators, owing to their large radiation absorption cross sections arising from the presence of Lu. Various scintillation properties of Ce- and Pr-doped Lu3Al5O12 and LuAlO3 crystals have been characterized (Wojtowicz, 1999[Wojtowicz, A. J. (1999). Acta Phys. Pol. A, 95, 165-178.]; Nikl, 2000[Nikl, M. (2000). Phys. Status Solidi A, 178, 595-620.]; Wojtowicz et al., 2006[Wojtowicz, A. J., Drozdowski, W., Wisniewski, D., Lefaucheur, J.-L., Galazka, Z., Gou, Z., Lukasiewicz, T. & Kisielewski, J. (2006). Opt. Mater. 28, 85-93.]; Nikl et al., 2013[Nikl, M., Yoshikawa, A., Kamada, K., Nejezchleb, K., Stanek, C. R., Mares, J. A. & Blazek, K. (2013). Prog. Cryst. Growth Charact. Mater. 59, 47-72.]), and the luminescence properties of Ce- and Pr-doped Lu4Al2O9 evaluated (Lempicki et al., 1996[Lempicki, A., Brecher, C., Wisniewski, D., Zych, E. & Wojtowicz, A. J. (1996). IEEE Trans. Nucl. Sci. 43, 1316-1320.]; Zhang et al., 1997[Zhang, L., Madej, C., Pédrini, C., Moine, B., Dujardin, C., Petrosyan, A. & Belsky, A. N. (1997). Chem. Phys. Lett. 268, 408-412.], Zhang et al., 1998[Zhang, L., Madej, C., Pedrini, C., Dujardin, C., Kamenskikh, I., Belsky, A., Shaw, D. A., Mesnard, P. & Fouassier, C. (1998). J. Electrochem. Soc.: Proceedings of the Sixth International Conference on Luminescent materials 97, 342-351.]; Drozdowski et al., 2005[Drozdowski, W., Lukasiewicz, T., Wojtowicz, A. J., Wisniewski, D. & Kisielewski, J. (2005). J. Cryst. Growth, 275, e709-e714.]). The crystal structures of the lutetium aluminates Lu3Al5O12 (Euler & Bruce, 1965[Euler, F. & Bruce, J. A. (1965). Acta Cryst. 19, 971-978.]) and LuAlO3 (Dernier & Maines, 1971[Dernier, P. D. & Maines, R. G. (1971). Mater. Res. Bull. 6, 433-439.]; Shishido et al., 1995[Shishido, T., Nojima, S., Tanaka, M., Horiuchi, H. & Fukuda, T. (1995). J. Alloys Compd. 227, 175-179.]) have been determined as garnet-type (LUAG) and perovskite-type (LUAP), respectively. However, to date, there have been no reports of the lattice constants of Lu4Al2O9, although Shirvinskaya & Popova (1977[Shirvinskaya, A. K. & Popova, V. F. (1977). Dokl. Akad. Nauk SSSR, 233, 1110-1113.]) treated it as isotypic with Y4Al2O9 and have reported the d-spacings and relative peak intensities in the powder X-ray diffraction pattern (PDF#00-033-0844).

Many REAl2O9 compounds have been investigated in detail. After Warshaw & Roy (1959[Warshaw, I. & Roy, R. (1959). J. Am. Ceram. Soc. 42, 434-438.]) first reported the existence of Y4Al2O9, Reed & Chase (1962[Reed, J. W. & Chase, A. B. (1962). Acta Cryst. 15, 812.]) determined the space group of this material as P21/c using X-ray Weissenberg and precession photography. Christensen & Hazell (1991[Christensen, A. N. & Hazell, R. G. (1991). Acta Chem. Scand. 45, 226-230.]) later determined the crystal structure of Y4Al2O9 using powder synchrotron X-ray and neutron diffraction. Brandle & Steinfink (1969[Brandle, C. D. & Steinfink, H. (1969). Inorg. Chem. 8, 1320-1324.]) also prepared crystals of REAl2O9 (RE = Sm, Gd, Eu, Dy, Ho) and determined the crystal structure of Eu4Al2O9 using X-ray diffraction.

The lattice parameters of RE4Al2O9 have previously been reported for RE = Y (Lehmann et al., 1987[Lehmann, M. S., Christensen, A. N., Fjellvåg, H., Feidenhans'l, R. & Nielsen, M. (1987). J. Appl. Cryst. 20, 123-129.]; Reed & Chase, 1962[Reed, J. W. & Chase, A. B. (1962). Acta Cryst. 15, 812.]; Christensen & Hazell, 1991[Christensen, A. N. & Hazell, R. G. (1991). Acta Chem. Scand. 45, 226-230.]; Yamane et al., 1995b[Yamane, H., Omori, M. & Hirai, T. (1995b). J. Mater. Sci. Lett. 14, 561-563.]; Talik et al., 2016[Talik, E., Guzik, A., Zajdel, P., Lipifska, L., Baran, M. & Szubka, M. (2016). Mater. Res. Bull. 83, 56-64.]), La (Dohrup et al., 1996[Dohrup, J., Hoyvald, A., Mogensen, G., Jacobsen, C. J. H. & Villadsen, J. (1996). J. Am. Ceram. Soc. 79, 2959-2960.]), Pr (Dohrup et al., 1996[Dohrup, J., Hoyvald, A., Mogensen, G., Jacobsen, C. J. H. & Villadsen, J. (1996). J. Am. Ceram. Soc. 79, 2959-2960.]), Nd (Dohrup et al., 1996[Dohrup, J., Hoyvald, A., Mogensen, G., Jacobsen, C. J. H. & Villadsen, J. (1996). J. Am. Ceram. Soc. 79, 2959-2960.]), Sm (Brandle & Steinfink, 1969[Brandle, C. D. & Steinfink, H. (1969). Inorg. Chem. 8, 1320-1324.]; Mizuno et al., 1977a[Mizuno, M., Yamada, T. & Noguchi, T. (1977a). J. Ceram. Soc. Jpn, 85, 374-379.]; Yamane et al., 1995a[Yamane, H., Ogawara, K., Omori, M. & Hirai, T. (1995a). J. Am. Ceram. Soc. 78, 2385-2390.]), Eu (Brandle & Steinfink, 1969[Brandle, C. D. & Steinfink, H. (1969). Inorg. Chem. 8, 1320-1324.]; Mizuno et al., 1977b[Mizuno, M., Yamada, T. & Noguchi, T. (1977b). J. Ceram. Soc. Jpn, 85, 543-548.]; Yamane et al., 1995a[Yamane, H., Ogawara, K., Omori, M. & Hirai, T. (1995a). J. Am. Ceram. Soc. 78, 2385-2390.]), Gd (Brandle & Steinfink, 1969[Brandle, C. D. & Steinfink, H. (1969). Inorg. Chem. 8, 1320-1324.]; Mizuno et al., 1977b[Mizuno, M., Yamada, T. & Noguchi, T. (1977b). J. Ceram. Soc. Jpn, 85, 543-548.]; Yamane et al., 1995a[Yamane, H., Ogawara, K., Omori, M. & Hirai, T. (1995a). J. Am. Ceram. Soc. 78, 2385-2390.]; Dohrup et al., 1996[Dohrup, J., Hoyvald, A., Mogensen, G., Jacobsen, C. J. H. & Villadsen, J. (1996). J. Am. Ceram. Soc. 79, 2959-2960.]; Martín-Sedeño et al., 2006[Martín-Sedeño, M. C., Marrero-López, D., Losilla, E. R., Bruque, S., Núñez, P. & Aranda, M. A. G. (2006). J. Solid State Chem. 179, 3445-3455.]), Tb (Jero & Kriven, 1988[Jero, P. D. & Kriven, W. M. (1988). J. Am. Ceram. Soc. 71, C454-C455.]; Yamane et al., 1995a[Yamane, H., Ogawara, K., Omori, M. & Hirai, T. (1995a). J. Am. Ceram. Soc. 78, 2385-2390.]; Dohrup et al., 1996[Dohrup, J., Hoyvald, A., Mogensen, G., Jacobsen, C. J. H. & Villadsen, J. (1996). J. Am. Ceram. Soc. 79, 2959-2960.]; Li et al., 2009[Li, Y. Q., Hirosaki, N., Xie, R. J., Takeda, T., Lofland, S. E. & Ramanujachary, K. V. (2009). J. Alloys Compd. 484, 943-948.]), Dy (Brandle & Steinfink, 1969[Brandle, C. D. & Steinfink, H. (1969). Inorg. Chem. 8, 1320-1324.]; Mizuno et al., 1978[Mizuno, M., Yamada, T. & Noguchi, T. (1978). J. Ceram. Soc. Jpn, 86, 359-364.]; Yamane et al., 1995a[Yamane, H., Ogawara, K., Omori, M. & Hirai, T. (1995a). J. Am. Ceram. Soc. 78, 2385-2390.]), Ho (Brandle & Steinfink, 1969[Brandle, C. D. & Steinfink, H. (1969). Inorg. Chem. 8, 1320-1324.]; Mizuno, 1979[Mizuno, M. (1979). J. Ceram. Soc. Jpn, 87, 405-412.]; Yamane et al., 1995a[Yamane, H., Ogawara, K., Omori, M. & Hirai, T. (1995a). J. Am. Ceram. Soc. 78, 2385-2390.]), Er (Mizuno, 1979[Mizuno, M. (1979). J. Ceram. Soc. Jpn, 87, 405-412.]; Yamane et al., 1995a[Yamane, H., Ogawara, K., Omori, M. & Hirai, T. (1995a). J. Am. Ceram. Soc. 78, 2385-2390.]), Tm (Yamane et al., 1995a[Yamane, H., Ogawara, K., Omori, M. & Hirai, T. (1995a). J. Am. Ceram. Soc. 78, 2385-2390.]), and Yb (Mizuno & Noguchi, 1980[Mizuno, M. & Noguchi, T. (1980). J. Ceram. Soc. Jpn, 88, 322-327.]; Yamane et al., 1995a[Yamane, H., Ogawara, K., Omori, M. & Hirai, T. (1995a). J. Am. Ceram. Soc. 78, 2385-2390.]).

Wu & Pelton (1992[Wu, P. & Pelton, A. D. (1992). J. Alloys Compd. 179, 259-287.]) investigated the phase diagram of the Lu2O3–Al2O3 system and showed that Lu4Al2O9 melted congruently at 2313 K under an inert atmosphere. Petrosyan et al. (2006[Petrosyan, A. G., Popova, V. F., Gusarov, V. V., Shirinyan, G. O., Pedrini, C. & Lecoq, P. (2006). J. Cryst. Growth, 293, 74-77.]) studied the same system under a reducing atmosphere and reported that Lu4Al2O9 could be formed by reaction of Lu2O3 and Lu3Al5O12 at 1923 K, but decomposed into Lu2O3 and a melt at 2273 K. Subsequently, Petrosyan et al. (2013[Petrosyan, A. G., Popova, V. F., Ugolkov, V. L., Romanov, D. P. & Ovanesyan, K. L. (2013). J. Cryst. Growth, 377, 178-183.]) observed incongruent melting of Lu4Al2O9 at 2123 K under an Ar / 2% H2 atmosphere using differential thermal analysis (DTA). Klimm (2010[Klimm, D. (2010). J. Cryst. Growth, 312, 730-733.]) employed DTA to investigate LuAlO3 melting behavior in a 5 N pure Ar flow and concluded that the congruent and incongruent melting of LuAlO3 depended on the atmospheric conditions. The author also concluded that the phase diagram at around Lu:Al = 1:1 under an inert atmosphere, previously reported by Wu & Pelton (1992[Wu, P. & Pelton, A. D. (1992). J. Alloys Compd. 179, 259-287.]), is correct. Yamane et al. (1995a[Yamane, H., Omori, M. & Hirai, T. (1995b). J. Mater. Sci. Lett. 14, 561-563.]) reported that only a very small amount of Lu4Al2O9 can be obtained by reactions in air at 1673–2073 K, even though RE4Al2O9 (RE = Y, Sm–Yb) can be synthesized under the same conditions.

Following these reports, the present authors also attempted to synthesize Lu4Al2O9 by heating a 2:1 molar ratio powder mixture of Lu2O3 and Al2O3 at 2073 K for 2 h in air, but the sample obtained was a mixture of LuAlO3 and Lu2O3 (see Fig. S1a in the supporting information). The method used to prepare the single crystals of Lu4Al2O9 used for the present diffraction study is described below.

2. Structural commentary

X-ray diffraction spots from the Lu4Al2O9 single crystal were indexed on the basis of a monoclinic unit cell with lattice parameters: a = 7.236 (2) Å, b = 10.333 (2) Å, c = 11.096 (3) Å, and β = 108.38 (2)°. As shown in Fig. 1[link], the unit-cell volume of Lu4Al2O9 calculated from these parameters lies on the extrapolated line of RE4Al2O9 volumes plotted against the effective ionic radii for sixfold coordination of the trivalent rare-earth anions (RE3+) (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). In other words, Lu4Al2O9 containing Lu, which has the smallest effective ionic radius of the RE atoms, has the smallest unit-cell volume in the RE4Al2O9 series, in line with predictions arising from the lanthanide contraction.

[Figure 1]
Figure 1
Unit-cell volume of RE4Al2O9 versus effective ionic radius for the trivalent rare-earth anion (RE3+) with sixfold coordination.

The crystal structure of Lu4Al2O9 (space group P21/c), determined using Eu4Al2O9 (Brandle & Steinfink, 1969[Brandle, C. D. & Steinfink, H. (1969). Inorg. Chem. 8, 1320-1324.]) as the starting model, contains two crystallographically distinct Al sites, four Lu sites, and nine O sites. The two Al sites are tetra­hedrally coordinated by oxygen atoms. The two Al tetra­hedra are connected through a shared O5 atom, forming an Al2O7 di­tetra­hedral oxy-aluminate group (Fig. 2[link]). The Al2O7 dimers lie parallel to the a axis, and are related by the c glide symmetry operation (Fig. 3[link]). The average Al1—O and Al2—O distances in Lu4Al2O9 are 1.744 and 1.756 Å, respectively, which are comparable to values found in Eu4Al2O9 (1.741 and 1.755 Å, Brandle & Steinfink, 1969[Brandle, C. D. & Steinfink, H. (1969). Inorg. Chem. 8, 1320-1324.]) and Y4Al2O9 (1.739 and 1.769 Å, Lehmann et al., 1987[Lehmann, M. S., Christensen, A. N., Fjellvåg, H., Feidenhans'l, R. & Nielsen, M. (1987). J. Appl. Cryst. 20, 123-129.]). The bond-valence sums (BVS; Brown & Altermatt, 1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]) calculated using the Al—O distances and bond-valence parameters recently reported by Gagne & Hawthorne (2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]) (r0 =1.634 Å, b = 0.39) are 3.02 and 2.93 for Al1 and Al2, respectively. These BVS values are close to those expected for trivalent Al. The Al1—O5—Al2 angle of the Al2O7 dimer is 134.9 (3)°, which is smaller than the corresponding angles in Eu4Al2O9 (141.9°; Brandle & Steinfink, 1969[Brandle, C. D. & Steinfink, H. (1969). Inorg. Chem. 8, 1320-1324.]) and Y4Al2O9 (137.6°; Lehmann et al., 1987[Lehmann, M. S., Christensen, A. N., Fjellvåg, H., Feidenhans'l, R. & Nielsen, M. (1987). J. Appl. Cryst. 20, 123-129.]).

[Figure 2]
Figure 2
The atomic arrangement of Lu4Al2O9 depicted with displacement ellipsoids at the 99% probability level. [Symmetry codes: (i) 1 − x, −y, 1 − z; (ii) −x, −y, 1 − z; (iii) x − 1, y, z; (iv) 1 + x, −y + [{1\over 2}], z − [{1\over 2}]; (v) x + 1, y, z; (vi) x, −y + [{1\over 2}], z − [{1\over 2}]; (vii) x, −y + [{1\over 2}], z + [{1\over 2}]; (viii) x, y, z − 1.]
[Figure 3]
Figure 3
The crystal structure of Lu4Al2O9 highlighting the Al2O7 di­tetra­hedra viewed down the b axis (upper), and the Al2O7 di­tetra­hedra and Lu-centered polyhedra viewed down the a axis (lower).

Of the four crystallographically distinct Lu atoms, Lu1 and Lu3 are coordinated by seven oxygen atoms with five Lu—O distances in the range 2.219 (5)–2.344 (5) Å and two in the range 2.461 (6)–2.573 (6) Å. The remaining Lu atoms, Lu2 and Lu4, are coordinated by six oxygen atoms in distorted octa­hedra with Lu—O distances in the range 2.172 (6)–2.337 (6) Å.

The averages Lu—O distances for the six-fold coordinated Lu atoms in Lu4Al2O9 are 2.250 and 2.260 Å for Lu2 and Lu4, respectively. These values are 0.02–0.10 Å shorter than those for the LuO6 octa­hedra found in Lu3Al5O12 (2.352 Å; Euler & Bruce, 1965[Euler, F. & Bruce, J. A. (1965). Acta Cryst. 19, 971-978.]) and LuAlO3 (2.330 Å; Shishido et al., 1995[Shishido, T., Nojima, S., Tanaka, M., Horiuchi, H. & Fukuda, T. (1995). J. Alloys Compd. 227, 175-179.]).

The average values for the Eu—O and Y—O distances in Eu4Al2O9 and Y4Al2O9 lie in the ranges 2.328–2.439 Å (Brandle & Steinfink, 1969[Brandle, C. D. & Steinfink, H. (1969). Inorg. Chem. 8, 1320-1324.]) and 2.286–2.387 Å (Lehmann et al., 1987[Lehmann, M. S., Christensen, A. N., Fjellvåg, H., Feidenhans'l, R. & Nielsen, M. (1987). J. Appl. Cryst. 20, 123-129.]), respectively. The differences between the RE—O lengths in RE4Al2O9 when RE = Eu and Lu (0.07–0.09 Å), and when RE = Y and Lu (0.02–0.05 Å) correspond to the differences between VIrEu − VIrLu (0.086 Å) and VIrY − VIrLu (0.039 Å), where VIrEu, VIrLu, and VIrLu are the effective ionic radii in sixfold coordination of Lu3+ (0.861 Å), Eu3+ (0.947 Å), and Y3+ (0.900 Å), respectively (Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). The BVS for Lu1, Lu2, Lu3, and Lu4, calculated using the bond-valence parameters (r0 = 1.939 Å, b = 0.403) of Gagné & Hawthorne (2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]), are 2.766, 2.796, 2.642, and 2.714, respectively, which are smaller than the expected valence value of +3 for the Lu atoms. The polyhedral volumes of Lu1O7 (18.18 Å3), Lu2O6 (14.29 Å3), Lu3O7 (18.56 Å3), and Lu4O6 (14.24 Å3) are 1.1–1.7 Å3 and 0.5–0.8 Å3 smaller than those for Eu4Al2O9 (Eu1O7:19.85 Å3, Eu2O6:15.38 Å3, Eu3O7:20.14 Å3, and Eu4O6:15.71 Å3) and for Y4Al2O9 (Y1O7:18.66 Å3, Y2O6:14.77 Å3, Y3O7:19.33 Å3, and Y4O6:14.98 Å3), respectively. These differences in polyhedral volumes correlate with the differences in ionic radii of the lanthanides.

3. Synthesis and crystallization

The starting powders Al2O3 (Sumitomo Chemicals, AKP20, 99.99%) and Lu2O3 (Nippon Yttrium, 99.999%) were mixed in a molar ratio of Lu:Al = 2:1, ground with ethanol in an agate mortar, and pressed into a pellet. The pellet was placed in a BN crucible with an inner diameter of 18 mm and a height of 20 mm. The BN crucible was covered with a BN lid, and heated in a chamber with a carbon heater (Shimadzu Mectem, Inc., VESTA). The pellet was heated slowly under vacuum (∼10 −2 Pa) from room temperature to 1273 K. During the 5 min. hold at 1273 K, the chamber was filled with Ar (99.9995%) up to 0.15 MPa. The temperature was then raised to 2173 K at a heating rate of 300 Kh−1. After being held at 2173 K for 4 h, the sample was cooled to 1473 K at a rate of 20 Kh−1, and then to room temperature by shutting off the heater. A part of the obtained sample was pulverized in the agate mortar, and powder X-ray diffraction measurements (Bruker D2 Phaser, Cu Kα radiation) confirmed that the major crystalline phase present in the sample was Lu4Al2O9, together with small amounts of LuAlO3 and unreacted Lu2O3 (Fig. S1a). Colorless crystals of Lu4Al2O9 were selected for single-crystal X-ray diffraction studies.

4. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The Eu atoms in the rare-earth metal sites in the structural model of Eu4Al2O9 (Brandle & Steinfink, 1969[Brandle, C. D. & Steinfink, H. (1969). Inorg. Chem. 8, 1320-1324.]) were replaced by Lu atoms to generate the initial model. Several iterations of refinement yielded an R value of 10.07% and a residual electron density of ∼10 e Å−3. A subsequent refinement, performed by implementing the (100) twin plane observed in a study of Y4Al2O9 (Yamane et al., 1995b[Yamane, H., Omori, M. & Hirai, T. (1995b). J. Mater. Sci. Lett. 14, 561-563.]), yielded an R(F2 > 2σ(F2)) value of 1.92% with an approximate volume ratio of 6:4 for the twin domains.

Table 1
Experimental details

Crystal data
Chemical formula Lu4Al2O9
Mr 897.84
Crystal system, space group Monoclinic, P21/c
Temperature (K) 301
a, b, c (Å) 7.2360 (11), 10.3330 (19), 11.096 (3)
β (°) 108.381 (11)
V3) 787.3 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 49.97
Crystal size (mm) 0.12 × 0.05 × 0.04
 
Data collection
Diffractometer Bruker D8 QUEST
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.451, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 32672, 2795, 2719
Rint 0.035
(sin θ/λ)max−1) 0.748
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.043, 1.17
No. of reflections 2795
No. of parameters 138
Δρmax, Δρmin (e Å−3) 1.49, −1.81
Computer programs: APEX3 (Bruker, 2018[Bruker (2018). APEX3 . Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2017[Bruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: APEX3 (Bruker, 2018); data reduction: SAINT (Bruker, 2017); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: VESTA (Momma & Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Lutetium aluminate top
Crystal data top
Lu4Al2O9F(000) = 1528
Mr = 897.84Dx = 7.575 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.2360 (11) ÅCell parameters from 1294 reflections
b = 10.3330 (19) Åθ = 2.8–38.5°
c = 11.096 (3) ŵ = 49.97 mm1
β = 108.381 (11)°T = 301 K
V = 787.3 (3) Å3Chip, colourless
Z = 40.12 × 0.05 × 0.04 mm
Data collection top
Bruker D8 QUEST
diffractometer
2719 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.035
ω and σcansθmax = 32.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1010
Tmin = 0.451, Tmax = 0.746k = 1515
32672 measured reflectionsl = 1616
2795 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + 17.273P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.019(Δ/σ)max = 0.001
wR(F2) = 0.043Δρmax = 1.49 e Å3
S = 1.17Δρmin = 1.81 e Å3
2795 reflectionsExtinction correction: SHELXL2014/7 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
138 parametersExtinction coefficient: 0.00026 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a two-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.2142 (4)0.1742 (2)0.1270 (2)0.0058 (4)
Al20.6551 (4)0.1717 (2)0.1108 (2)0.0059 (4)
Lu10.52225 (7)0.11375 (3)0.78409 (2)0.00572 (6)
Lu20.02236 (6)0.10027 (3)0.80405 (2)0.00574 (6)
Lu30.34172 (7)0.12783 (3)0.44005 (2)0.00605 (6)
Lu40.83940 (6)0.12082 (3)0.41774 (3)0.00610 (6)
O10.7934 (8)0.2450 (6)0.7469 (5)0.0102 (11)
O20.2314 (8)0.2439 (5)0.7699 (5)0.0072 (11)
O30.2106 (13)0.0095 (5)0.1516 (5)0.0102 (10)
O40.0720 (8)0.2340 (6)0.9813 (6)0.0092 (11)
O50.4326 (10)0.2381 (4)0.1156 (5)0.0085 (8)
O60.6371 (8)0.2328 (5)0.9599 (5)0.0072 (11)
O70.6926 (13)0.0084 (5)0.1529 (5)0.0111 (10)
O80.0764 (12)0.0082 (5)0.3927 (5)0.0072 (9)
O90.5643 (13)0.0063 (5)0.3906 (5)0.0069 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0071 (12)0.0044 (8)0.0067 (9)0.0012 (8)0.0032 (8)0.0005 (7)
Al20.0074 (12)0.0050 (8)0.0055 (8)0.0010 (8)0.0021 (8)0.0012 (7)
Lu10.00622 (14)0.00463 (12)0.00594 (10)0.00019 (12)0.00140 (14)0.00101 (8)
Lu20.00566 (13)0.00433 (12)0.00733 (10)0.00031 (13)0.00218 (14)0.00058 (8)
Lu30.00647 (13)0.00518 (11)0.00625 (10)0.00024 (13)0.00165 (13)0.00101 (9)
Lu40.00538 (14)0.00435 (10)0.00863 (10)0.00048 (13)0.00231 (15)0.00137 (9)
O10.008 (3)0.013 (3)0.008 (2)0.0039 (19)0.0002 (18)0.002 (2)
O20.009 (3)0.006 (2)0.007 (2)0.0012 (18)0.0030 (19)0.0010 (17)
O30.011 (3)0.006 (2)0.015 (2)0.000 (3)0.007 (3)0.0006 (17)
O40.009 (3)0.007 (2)0.009 (2)0.0039 (18)0.0009 (18)0.0003 (19)
O50.008 (2)0.0064 (18)0.012 (2)0.003 (2)0.004 (2)0.0003 (15)
O60.008 (3)0.007 (2)0.007 (2)0.0017 (18)0.0018 (18)0.0009 (17)
O70.013 (3)0.008 (2)0.016 (2)0.003 (3)0.009 (3)0.0059 (18)
O80.005 (3)0.006 (2)0.009 (2)0.003 (2)0.000 (3)0.0002 (16)
O90.010 (3)0.0042 (19)0.007 (2)0.001 (3)0.003 (3)0.0001 (16)
Geometric parameters (Å, º) top
Al1—O31.724 (6)Lu3—O5iv2.310 (5)
Al1—O4i1.733 (6)Lu3—O6ii2.529 (5)
Al1—O51.754 (7)Lu3—O4ii2.573 (6)
Al1—O2ii1.767 (6)Lu3—Al2iv3.211 (2)
Al1—Lu1ii3.219 (2)Lu3—Al1iv3.247 (2)
Al1—Lu3ii3.247 (2)Lu3—Lu3iii3.4748 (8)
Al1—Lu33.336 (2)Lu3—Lu4iii3.4803 (7)
Al2—O71.749 (6)Lu4—O4ix2.198 (6)
Al2—O1ii1.753 (6)Lu4—O92.253 (8)
Al2—O6i1.755 (6)Lu4—O6ii2.255 (6)
Al2—O51.767 (7)Lu4—O8v2.257 (8)
Al2—Lu3ii3.211 (2)Lu4—O1ii2.287 (6)
Al2—Lu1ii3.272 (2)Lu4—O8iii2.311 (5)
Al2—Lu43.285 (2)Lu4—Lu3iii3.4804 (7)
Lu1—O9iii2.219 (5)Lu4—Lu4x3.5061 (8)
Lu1—O62.233 (5)Lu4—Lu2ix3.5641 (7)
Lu1—O3iii2.236 (8)Lu4—Lu3v3.5652 (7)
Lu1—O7iii2.277 (8)Lu4—Lu1ii3.5836 (7)
Lu1—O5iv2.344 (5)O1—Al2iv1.753 (6)
Lu1—O22.461 (6)O1—Lu2v2.172 (6)
Lu1—O12.524 (6)O1—Lu4iv2.287 (6)
Lu1—Al1iv3.219 (2)O2—Al1iv1.767 (6)
Lu1—Al2iv3.272 (2)O2—Lu3iv2.238 (5)
Lu1—Lu2v3.5579 (7)O3—Lu2vii2.213 (8)
Lu1—Lu4iv3.5836 (7)O3—Lu1iii2.236 (8)
Lu1—Lu33.6270 (9)O4—Al1xi1.733 (6)
Lu2—O1vi2.172 (6)O4—Lu4viii2.198 (6)
Lu2—O3vii2.213 (8)O4—Lu3iv2.573 (6)
Lu2—O22.235 (6)O5—Lu3ii2.310 (5)
Lu2—O7iii2.263 (8)O5—Lu1ii2.344 (5)
Lu2—O8vii2.280 (5)O6—Al2xi1.754 (6)
Lu2—O42.337 (6)O6—Lu4iv2.255 (6)
Lu2—Lu1vi3.5579 (7)O6—Lu3iv2.529 (5)
Lu2—Lu4viii3.5641 (7)O7—Lu2iii2.263 (8)
Lu2—Lu3iv3.6485 (7)O7—Lu1iii2.277 (8)
Lu2—Lu4iii3.7187 (7)O8—Lu4vi2.257 (8)
Lu2—Lu3vii3.9156 (7)O8—Lu2vii2.280 (5)
Lu3—O2ii2.238 (5)O8—Lu4iii2.311 (5)
Lu3—O92.242 (8)O9—Lu1iii2.219 (5)
Lu3—O9iii2.260 (5)O9—Lu3iii2.260 (5)
Lu3—O82.302 (7)
O3—Al1—O4i117.7 (3)O2ii—Lu3—O896.84 (19)
O3—Al1—O5116.2 (4)O9—Lu3—O8102.35 (18)
O4i—Al1—O594.7 (3)O9iii—Lu3—O880.0 (2)
O3—Al1—O2ii109.3 (3)O2ii—Lu3—O5iv106.69 (18)
O4i—Al1—O2ii121.3 (3)O9—Lu3—O5iv120.4 (2)
O5—Al1—O2ii94.3 (3)O9iii—Lu3—O5iv74.68 (16)
O3—Al1—Lu1ii128.9 (3)O8—Lu3—O5iv123.6 (2)
O4i—Al1—Lu1ii111.6 (2)O2ii—Lu3—O6ii78.65 (19)
O5—Al1—Lu1ii45.30 (17)O9—Lu3—O6ii71.8 (2)
O2ii—Al1—Lu1ii49.24 (19)O9iii—Lu3—O6ii104.6 (2)
O3—Al1—Lu3ii138.1 (3)O8—Lu3—O6ii171.4 (2)
O4i—Al1—Lu3ii52.0 (2)O5iv—Lu3—O6ii65.0 (2)
O5—Al1—Lu3ii43.34 (18)O2ii—Lu3—O4ii74.48 (19)
O2ii—Al1—Lu3ii108.5 (2)O9—Lu3—O4ii176.2 (2)
Lu1ii—Al1—Lu3ii68.24 (5)O9iii—Lu3—O4ii103.8 (2)
O3—Al1—Lu372.9 (2)O8—Lu3—O4ii75.8 (2)
O4i—Al1—Lu3155.5 (2)O5iv—Lu3—O4ii63.1 (2)
O5—Al1—Lu399.75 (19)O6ii—Lu3—O4ii109.64 (15)
O2ii—Al1—Lu338.37 (18)O2ii—Lu3—Al2iv96.50 (15)
Lu1ii—Al1—Lu367.47 (5)O9—Lu3—Al2iv94.44 (18)
Lu3ii—Al1—Lu3135.61 (8)O9iii—Lu3—Al2iv86.21 (17)
O7—Al2—O1ii104.2 (3)O8—Lu3—Al2iv155.68 (16)
O7—Al2—O6i124.1 (3)O5iv—Lu3—Al2iv32.39 (17)
O1ii—Al2—O6i119.7 (3)O6ii—Lu3—Al2iv32.95 (13)
O7—Al2—O5115.6 (4)O4ii—Lu3—Al2iv88.36 (14)
O1ii—Al2—O593.5 (3)O2ii—Lu3—Al1iv93.90 (15)
O6i—Al2—O595.4 (3)O9—Lu3—Al1iv151.60 (17)
O7—Al2—Lu3ii143.2 (3)O9iii—Lu3—Al1iv85.82 (16)
O1ii—Al2—Lu3ii107.2 (2)O8—Lu3—Al1iv98.38 (18)
O6i—Al2—Lu3ii51.62 (19)O5iv—Lu3—Al1iv31.41 (17)
O5—Al2—Lu3ii44.47 (16)O6ii—Lu3—Al1iv89.32 (13)
O7—Al2—Lu1ii123.1 (2)O4ii—Lu3—Al1iv32.07 (14)
O1ii—Al2—Lu1ii49.8 (2)Al2iv—Lu3—Al1iv60.46 (5)
O6i—Al2—Lu1ii111.7 (2)O2ii—Lu3—Al129.36 (15)
O5—Al2—Lu1ii43.89 (17)O9—Lu3—Al179.05 (14)
Lu3ii—Al2—Lu1ii68.03 (5)O9iii—Lu3—Al1149.97 (14)
O7—Al2—Lu465.8 (2)O8—Lu3—Al185.02 (13)
O1ii—Al2—Lu441.4 (2)O5iv—Lu3—Al1134.72 (12)
O6i—Al2—Lu4158.5 (2)O6ii—Lu3—Al187.58 (13)
O5—Al2—Lu496.12 (18)O4ii—Lu3—Al197.42 (14)
Lu3ii—Al2—Lu4134.03 (8)Al2iv—Lu3—Al1115.70 (7)
Lu1ii—Al2—Lu466.26 (5)Al1iv—Lu3—Al1122.25 (5)
O9iii—Lu1—O6174.8 (3)O2ii—Lu3—Lu3iii142.19 (14)
O9iii—Lu1—O3iii86.4 (2)O9—Lu3—Lu3iii39.67 (13)
O6—Lu1—O3iii89.4 (2)O9iii—Lu3—Lu3iii39.30 (19)
O9iii—Lu1—O7iii85.8 (2)O8—Lu3—Lu3iii91.43 (16)
O6—Lu1—O7iii98.0 (2)O5iv—Lu3—Lu3iii98.91 (14)
O3iii—Lu1—O7iii101.03 (18)O6ii—Lu3—Lu3iii87.86 (13)
O9iii—Lu1—O5iv74.76 (17)O4ii—Lu3—Lu3iii143.06 (13)
O6—Lu1—O5iv105.69 (19)Al2iv—Lu3—Lu3iii90.40 (5)
O3iii—Lu1—O5iv128.4 (2)Al1iv—Lu3—Lu3iii121.35 (4)
O7iii—Lu1—O5iv124.3 (2)Al1—Lu3—Lu3iii116.13 (4)
O9iii—Lu1—O2104.5 (2)O2ii—Lu3—Lu4iii137.27 (15)
O6—Lu1—O280.21 (19)O9—Lu3—Lu4iii95.71 (15)
O3iii—Lu1—O2165.4 (2)O9iii—Lu3—Lu4iii39.5 (2)
O7iii—Lu1—O270.7 (2)O8—Lu3—Lu4iii41.12 (12)
O5iv—Lu1—O264.9 (2)O5iv—Lu3—Lu4iii96.21 (14)
O9iii—Lu1—O1100.2 (2)O6ii—Lu3—Lu4iii144.07 (12)
O6—Lu1—O175.68 (19)O4ii—Lu3—Lu4iii85.06 (13)
O3iii—Lu1—O173.7 (2)Al2iv—Lu3—Lu4iii120.37 (4)
O7iii—Lu1—O1171.6 (2)Al1iv—Lu3—Lu4iii87.25 (5)
O5iv—Lu1—O163.4 (2)Al1—Lu3—Lu4iii123.92 (4)
O2—Lu1—O1112.92 (16)Lu3iii—Lu3—Lu4iii64.036 (14)
O9iii—Lu1—Al1iv87.18 (17)O4ix—Lu4—O9163.0 (2)
O6—Lu1—Al1iv95.83 (15)O4ix—Lu4—O6ii87.53 (18)
O3iii—Lu1—Al1iv160.44 (18)O9—Lu4—O6ii77.1 (2)
O7iii—Lu1—Al1iv96.91 (18)O4ix—Lu4—O8v84.7 (2)
O5iv—Lu1—Al1iv32.14 (17)O9—Lu4—O8v110.30 (17)
O2—Lu1—Al1iv32.95 (13)O6ii—Lu4—O8v171.9 (2)
O1—Lu1—Al1iv89.26 (14)O4ix—Lu4—O1ii75.4 (2)
O9iii—Lu1—Al2iv85.38 (16)O9—Lu4—O1ii108.45 (19)
O6—Lu1—Al2iv92.47 (15)O6ii—Lu4—O1ii80.3 (2)
O3iii—Lu1—Al2iv100.91 (19)O8v—Lu4—O1ii100.0 (2)
O7iii—Lu1—Al2iv155.76 (18)O4ix—Lu4—O8iii95.5 (2)
O5iv—Lu1—Al2iv31.50 (17)O9—Lu4—O8iii79.9 (2)
O2—Lu1—Al2iv89.77 (14)O6ii—Lu4—O8iii98.7 (2)
O1—Lu1—Al2iv32.02 (14)O8v—Lu4—O8iii79.7 (3)
Al1iv—Lu1—Al2iv60.13 (5)O1ii—Lu4—O8iii170.9 (2)
O9iii—Lu1—Lu2v91.9 (2)O4ix—Lu4—Al2104.05 (15)
O6—Lu1—Lu2v82.89 (14)O9—Lu4—Al283.86 (13)
O3iii—Lu1—Lu2v36.67 (18)O6ii—Lu4—Al291.72 (14)
O7iii—Lu1—Lu2v137.63 (18)O8v—Lu4—Al292.45 (14)
O5iv—Lu1—Lu2v95.47 (17)O1ii—Lu4—Al230.48 (15)
O2—Lu1—Lu2v149.10 (13)O8iii—Lu4—Al2158.20 (14)
O1—Lu1—Lu2v37.17 (13)O4ix—Lu4—Lu3iii135.90 (15)
Al1iv—Lu1—Lu2v125.28 (5)O9—Lu4—Lu3iii39.61 (13)
Al2iv—Lu1—Lu2v65.26 (5)O6ii—Lu4—Lu3iii92.25 (14)
O9iii—Lu1—Lu4iv139.2 (2)O8v—Lu4—Lu3iii91.67 (16)
O6—Lu1—Lu4iv37.22 (14)O1ii—Lu4—Lu3iii147.82 (15)
O3iii—Lu1—Lu4iv85.85 (17)O8iii—Lu4—Lu3iii40.93 (18)
O7iii—Lu1—Lu4iv135.01 (15)Al2—Lu4—Lu3iii120.03 (4)
O5iv—Lu1—Lu4iv79.07 (14)O4ix—Lu4—Lu4x90.25 (15)
O2—Lu1—Lu4iv91.80 (13)O9—Lu4—Lu4x96.21 (15)
O1—Lu1—Lu4iv39.37 (13)O6ii—Lu4—Lu4x137.47 (14)
Al1iv—Lu1—Lu4iv86.95 (5)O8v—Lu4—Lu4x40.44 (13)
Al2iv—Lu1—Lu4iv57.05 (4)O1ii—Lu4—Lu4x139.71 (15)
Lu2v—Lu1—Lu4iv59.875 (14)O8iii—Lu4—Lu4x39.3 (2)
O9iii—Lu1—Lu336.30 (13)Al2—Lu4—Lu4x129.75 (4)
O6—Lu1—Lu3143.97 (15)Lu3iii—Lu4—Lu4x61.365 (15)
O3iii—Lu1—Lu3110.32 (15)O4ix—Lu4—Lu2ix39.59 (15)
O7iii—Lu1—Lu3106.94 (16)O9—Lu4—Lu2ix142.06 (14)
O5iv—Lu1—Lu338.47 (12)O6ii—Lu4—Lu2ix82.47 (14)
O2—Lu1—Lu383.91 (13)O8v—Lu4—Lu2ix93.01 (16)
O1—Lu1—Lu381.20 (13)O1ii—Lu4—Lu2ix35.84 (15)
Al1iv—Lu1—Lu356.26 (4)O8iii—Lu4—Lu2ix135.12 (17)
Al2iv—Lu1—Lu355.19 (4)Al2—Lu4—Lu2ix65.06 (4)
Lu2v—Lu1—Lu395.095 (18)Lu3iii—Lu4—Lu2ix172.933 (13)
Lu4iv—Lu1—Lu3112.083 (15)Lu4x—Lu4—Lu2ix120.06 (2)
O1vi—Lu2—O3vii81.6 (2)O4ix—Lu4—Lu3v45.83 (16)
O1vi—Lu2—O289.32 (19)O9—Lu4—Lu3v149.15 (16)
O3vii—Lu2—O2169.1 (2)O6ii—Lu4—Lu3v133.35 (14)
O1vi—Lu2—O7iii164.5 (2)O8v—Lu4—Lu3v39.02 (17)
O3vii—Lu2—O7iii113.97 (17)O1ii—Lu4—Lu3v85.63 (15)
O2—Lu2—O7iii75.2 (2)O8iii—Lu4—Lu3v88.7 (2)
O1vi—Lu2—O8vii91.6 (2)Al2—Lu4—Lu3v98.07 (5)
O3vii—Lu2—O8vii88.2 (2)Lu3iii—Lu4—Lu3v120.326 (15)
O2—Lu2—O8vii98.0 (2)Lu4x—Lu4—Lu3v58.961 (16)
O7iii—Lu2—O8vii89.1 (3)Lu2ix—Lu4—Lu3v61.562 (13)
O1vi—Lu2—O474.9 (2)O4ix—Lu4—Lu1ii86.32 (15)
O3vii—Lu2—O492.4 (2)O9—Lu4—Lu1ii85.60 (15)
O2—Lu2—O479.5 (2)O6ii—Lu4—Lu1ii36.81 (14)
O7iii—Lu2—O4103.2 (2)O8v—Lu4—Lu1ii144.42 (14)
O8vii—Lu2—O4166.2 (2)O1ii—Lu4—Lu1ii44.44 (15)
O1vi—Lu2—Lu1vi44.59 (16)O8iii—Lu4—Lu1ii135.46 (19)
O3vii—Lu2—Lu1vi37.11 (17)Al2—Lu4—Lu1ii56.69 (4)
O2—Lu2—Lu1vi133.86 (14)Lu3iii—Lu4—Lu1ii117.97 (2)
O7iii—Lu2—Lu1vi150.92 (17)Lu4x—Lu4—Lu1ii173.404 (16)
O8vii—Lu2—Lu1vi87.2 (2)Lu2ix—Lu4—Lu1ii59.705 (14)
O4—Lu2—Lu1vi84.98 (14)Lu3v—Lu4—Lu1ii121.266 (15)
O1vi—Lu2—Lu4viii38.06 (15)Al2iv—O1—Lu2v139.9 (3)
O3vii—Lu2—Lu4viii86.66 (16)Al2iv—O1—Lu4iv108.1 (3)
O2—Lu2—Lu4viii82.52 (14)Lu2v—O1—Lu4iv106.1 (2)
O7iii—Lu2—Lu4viii137.89 (15)Al2iv—O1—Lu198.2 (3)
O8vii—Lu2—Lu4viii129.58 (17)Lu2v—O1—Lu198.2 (2)
O4—Lu2—Lu4viii36.84 (14)Lu4iv—O1—Lu196.2 (2)
Lu1vi—Lu2—Lu4viii60.420 (13)Al1iv—O2—Lu2127.6 (3)
O1vi—Lu2—Lu3iv85.18 (17)Al1iv—O2—Lu3iv112.3 (3)
O3vii—Lu2—Lu3iv136.93 (14)Lu2—O2—Lu3iv109.3 (2)
O2—Lu2—Lu3iv35.36 (14)Al1iv—O2—Lu197.8 (2)
O7iii—Lu2—Lu3iv83.02 (17)Lu2—O2—Lu1103.7 (2)
O8vii—Lu2—Lu3iv133.14 (18)Lu3iv—O2—Lu1101.5 (2)
O4—Lu2—Lu3iv44.56 (15)Al1—O3—Lu2vii126.3 (5)
Lu1vi—Lu2—Lu3iv119.653 (15)Al1—O3—Lu1iii123.9 (5)
Lu4viii—Lu2—Lu3iv59.233 (14)Lu2vii—O3—Lu1iii106.2 (2)
O1vi—Lu2—Lu1128.85 (16)Al1xi—O4—Lu4viii135.4 (3)
O3vii—Lu2—Lu1149.48 (17)Al1xi—O4—Lu2117.6 (3)
O2—Lu2—Lu140.30 (14)Lu4viii—O4—Lu2103.6 (2)
O7iii—Lu2—Lu135.63 (17)Al1xi—O4—Lu3iv95.9 (3)
O8vii—Lu2—Lu188.6 (2)Lu4viii—O4—Lu3iv96.4 (2)
O4—Lu2—Lu197.74 (14)Lu2—O4—Lu3iv95.9 (2)
Lu1vi—Lu2—Lu1172.025 (12)Al1—O5—Al2134.9 (3)
Lu4viii—Lu2—Lu1118.072 (14)Al1—O5—Lu3ii105.3 (3)
Lu3iv—Lu2—Lu159.438 (13)Al2—O5—Lu3ii103.1 (3)
O1vi—Lu2—Lu4iii124.70 (15)Al1—O5—Lu1ii102.6 (3)
O3vii—Lu2—Lu4iii102.42 (15)Al2—O5—Lu1ii104.6 (3)
O2—Lu2—Lu4iii87.60 (14)Lu3ii—O5—Lu1ii102.39 (18)
O7iii—Lu2—Lu4iii54.38 (15)Al2xi—O6—Lu1122.0 (3)
O8vii—Lu2—Lu4iii34.8 (2)Al2xi—O6—Lu4iv125.6 (3)
O4—Lu2—Lu4iii156.67 (14)Lu1—O6—Lu4iv106.0 (2)
Lu1vi—Lu2—Lu4iii117.607 (14)Al2xi—O6—Lu3iv95.4 (2)
Lu4viii—Lu2—Lu4iii159.792 (10)Lu1—O6—Lu3iv99.6 (2)
Lu3iv—Lu2—Lu4iii118.642 (17)Lu4iv—O6—Lu3iv100.7 (2)
Lu1—Lu2—Lu4iii60.716 (12)Al2—O7—Lu2iii126.1 (5)
O1vi—Lu2—Lu3vii85.85 (16)Al2—O7—Lu1iii123.6 (5)
O3vii—Lu2—Lu3vii56.75 (14)Lu2iii—O7—Lu1iii109.0 (2)
O2—Lu2—Lu3vii128.77 (14)Lu4vi—O8—Lu2vii110.1 (3)
O7iii—Lu2—Lu3vii102.54 (16)Lu4vi—O8—Lu3102.9 (2)
O8vii—Lu2—Lu3vii31.5 (2)Lu2vii—O8—Lu3117.4 (3)
O4—Lu2—Lu3vii146.03 (14)Lu4vi—O8—Lu4iii100.3 (3)
Lu1vi—Lu2—Lu3vii62.045 (13)Lu2vii—O8—Lu4iii125.0 (2)
Lu4viii—Lu2—Lu3vii119.182 (17)Lu3—O8—Lu4iii97.9 (2)
Lu3iv—Lu2—Lu3vii161.782 (11)Lu1iii—O9—Lu3120.0 (4)
Lu1—Lu2—Lu3vii116.038 (15)Lu1iii—O9—Lu4113.8 (3)
Lu4iii—Lu2—Lu3vii55.607 (13)Lu3—O9—Lu4110.2 (2)
O2ii—Lu3—O9102.6 (2)Lu1iii—O9—Lu3iii108.2 (2)
O2ii—Lu3—O9iii176.7 (3)Lu3—O9—Lu3iii101.0 (3)
O9—Lu3—O9iii79.0 (3)Lu4—O9—Lu3iii100.9 (3)
Symmetry codes: (i) x, y, z1; (ii) x, y+1/2, z1/2; (iii) x+1, y, z+1; (iv) x, y+1/2, z+1/2; (v) x+1, y, z; (vi) x1, y, z; (vii) x, y, z+1; (viii) x1, y+1/2, z+1/2; (ix) x+1, y+1/2, z1/2; (x) x+2, y, z+1; (xi) x, y, z+1.
 

Acknowledgements

We are grateful to Ms Yuko Suzuki and Ms Mitsuyo Takaishi for their assistance with the high-temperature synthesis.

Funding information

Funding for this research was provided by the Mitsubishi Chemical Group, Science and Technology Research Center, Inc. (a joint research with Tohoku University and the Mitsubishi Chemical Group, Science and Technology Research Center, Inc. J180002907).

References

First citationBrandle, C. D. & Steinfink, H. (1969). Inorg. Chem. 8, 1320–1324.  CrossRef ICSD CAS Web of Science Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2016). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2017). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2018). APEX3 . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChristensen, A. N. & Hazell, R. G. (1991). Acta Chem. Scand. 45, 226–230.  CrossRef CAS Google Scholar
First citationDernier, P. D. & Maines, R. G. (1971). Mater. Res. Bull. 6, 433–439.  CrossRef CAS Google Scholar
First citationDing, L., Zhang, Q., Luo, J., Liu, W., Zhou, W. & Yin, S. (2011). J. Alloys Compd. 509, 10167–10171.  CrossRef CAS Google Scholar
First citationDohrup, J., Hoyvald, A., Mogensen, G., Jacobsen, C. J. H. & Villadsen, J. (1996). J. Am. Ceram. Soc. 79, 2959–2960.  CrossRef CAS Google Scholar
First citationDrozdowski, W., Lukasiewicz, T., Wojtowicz, A. J., Wisniewski, D. & Kisielewski, J. (2005). J. Cryst. Growth, 275, e709–e714.  CAS Google Scholar
First citationEuler, F. & Bruce, J. A. (1965). Acta Cryst. 19, 971–978.  CrossRef ICSD IUCr Journals Web of Science Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJero, P. D. & Kriven, W. M. (1988). J. Am. Ceram. Soc. 71, C454–C455.  CAS Google Scholar
First citationKlimm, D. (2010). J. Cryst. Growth, 312, 730–733.  CAS Google Scholar
First citationLehmann, M. S., Christensen, A. N., Fjellvåg, H., Feidenhans'l, R. & Nielsen, M. (1987). J. Appl. Cryst. 20, 123–129.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationLempicki, A., Brecher, C., Wisniewski, D., Zych, E. & Wojtowicz, A. J. (1996). IEEE Trans. Nucl. Sci. 43, 1316–1320.  CAS Google Scholar
First citationLi, Y. Q., Hirosaki, N., Xie, R. J., Takeda, T., Lofland, S. E. & Ramanujachary, K. V. (2009). J. Alloys Compd. 484, 943–948.  CAS Google Scholar
First citationMartín-Sedeño, M. C., Marrero-López, D., Losilla, E. R., Bruque, S., Núñez, P. & Aranda, M. A. G. (2006). J. Solid State Chem. 179, 3445–3455.  Google Scholar
First citationMizuno, M. (1979). J. Ceram. Soc. Jpn, 87, 405–412.  CAS Google Scholar
First citationMizuno, M. & Noguchi, T. (1980). J. Ceram. Soc. Jpn, 88, 322–327.  CAS Google Scholar
First citationMizuno, M., Yamada, T. & Noguchi, T. (1977a). J. Ceram. Soc. Jpn, 85, 374–379.  CAS Google Scholar
First citationMizuno, M., Yamada, T. & Noguchi, T. (1977b). J. Ceram. Soc. Jpn, 85, 543–548.  CAS Google Scholar
First citationMizuno, M., Yamada, T. & Noguchi, T. (1978). J. Ceram. Soc. Jpn, 86, 359–364.  CAS Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNikl, M. (2000). Phys. Status Solidi A, 178, 595-620.  CAS Google Scholar
First citationNikl, M., Yoshikawa, A., Kamada, K., Nejezchleb, K., Stanek, C. R., Mares, J. A. & Blazek, K. (2013). Prog. Cryst. Growth Charact. Mater. 59, 47–72.  CAS Google Scholar
First citationPetrosyan, A. G., Popova, V. F., Gusarov, V. V., Shirinyan, G. O., Pedrini, C. & Lecoq, P. (2006). J. Cryst. Growth, 293, 74–77.  CAS Google Scholar
First citationPetrosyan, A. G., Popova, V. F., Ugolkov, V. L., Romanov, D. P. & Ovanesyan, K. L. (2013). J. Cryst. Growth, 377, 178–183.  CAS Google Scholar
First citationReed, J. W. & Chase, A. B. (1962). Acta Cryst. 15, 812.  CrossRef IUCr Journals Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShirvinskaya, A. K. & Popova, V. F. (1977). Dokl. Akad. Nauk SSSR, 233, 1110–1113.  CAS Google Scholar
First citationShishido, T., Nojima, S., Tanaka, M., Horiuchi, H. & Fukuda, T. (1995). J. Alloys Compd. 227, 175–179.  CAS Google Scholar
First citationTalik, E., Guzik, A., Zajdel, P., Lipifska, L., Baran, M. & Szubka, M. (2016). Mater. Res. Bull. 83, 56–64.  CAS Google Scholar
First citationWang, Z., Zou, J., Zhang, C., Yang, B., Shi, M., Li, Y., Zhou, H., Liu, Y., Li, M. & Liu, Z. (2018). J. Non-Cryst. Solids, 489, 57–63.  CAS Google Scholar
First citationWarshaw, I. & Roy, R. (1959). J. Am. Ceram. Soc. 42, 434–438.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWojtowicz, A. J. (1999). Acta Phys. Pol. A, 95, 165–178.  CAS Google Scholar
First citationWojtowicz, A. J., Drozdowski, W., Wisniewski, D., Lefaucheur, J.-L., Galazka, Z., Gou, Z., Lukasiewicz, T. & Kisielewski, J. (2006). Opt. Mater. 28, 85–93.  CrossRef CAS Google Scholar
First citationWu, P. & Pelton, A. D. (1992). J. Alloys Compd. 179, 259–287.  CrossRef CAS Web of Science Google Scholar
First citationXiang, R., Liang, X., Li, P., Di, X. & Xiang, W. (2016). Chem. Eng. J. 306, 858–865.  CrossRef CAS Google Scholar
First citationYamane, H., Ogawara, K., Omori, M. & Hirai, T. (1995a). J. Am. Ceram. Soc. 78, 2385–2390.  CrossRef CAS Google Scholar
First citationYamane, H., Omori, M. & Hirai, T. (1995b). J. Mater. Sci. Lett. 14, 561–563.  CrossRef CAS Google Scholar
First citationZhang, L., Madej, C., Pedrini, C., Dujardin, C., Kamenskikh, I., Belsky, A., Shaw, D. A., Mesnard, P. & Fouassier, C. (1998). J. Electrochem. Soc.: Proceedings of the Sixth International Conference on Luminescent materials 97, 342-351.  Google Scholar
First citationZhang, L., Madej, C., Pédrini, C., Moine, B., Dujardin, C., Petrosyan, A. & Belsky, A. N. (1997). Chem. Phys. Lett. 268, 408–412.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds