research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1R,5S)-endo-(8-methyl-8-azoniabi­cyclo­[3.2.1]oct-3-yl)ammonium aqua­tri­chlorido­nitratocopper(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Crystallography, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 St Petersburg, Russian Federation, and bDepartment of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 St Petersburg, Russian Federation
*Correspondence e-mail: sergei.britvin@spbu.ru

Edited by A. M. Chippindale, University of Reading, England (Received 4 September 2017; accepted 10 October 2017; online 20 October 2017)

The structure of a salt of diprotonated endo-3-amino­tropane crystallized with a copper(II) anionic cluster is reported, viz. (C8H18N2)[CuCl3(NO3)(H2O)]. Neither ion in the salt has been structurally characterized previously. In the crystal, the ions pack together to form a three-dimensional structure held together by a network of inter­molecular N—H⋯O, O—H⋯Cl and N—H⋯Cl hydrogen-bonding inter­actions. Selective crystallization of the title compound can be considered as a simple method for the separation of the exo and endo isomers of 3-amino­tropane.

1. Chemical context

The bicyclic ring of tropane [(1R,5S)-8-methyl-8-aza­bicyclo­[3.2.1]octa­ne] is the fuctional core of pharmaceutically important alkaloids, such as atropine, hyoscyamine, scopolamine, cocaine and their semisynthetic derivatives (Pollini et al., 2006[Pollini, G. P., Benetti, S., De Risi, C. & Zanirato, V. (2006). Chem. Rev. 106, 2434-2454.]; Kim et al., 2016[Kim, N., Estrada, O., Chavez, B., Stewart, C. Jr & D'Auria, J. C. (2016). Molecules, 21. Article No. 1510.]). As a consequence, there have been a large number of structural studies devoted to tropane-based compounds. It is surprising, however, that some of the simplest derivatives of tropane, such as 3-amino­tropane, have not been structurally characterized in their unsubstituted forms. The structures of other simple and well-known bicyclic organic compounds have been reported only very recently, including 1,4-di­aza­bicyclo­[3.2.1]octane (Britvin et al., 2017[Britvin, S. N., Rumyantsev, A. M., Zobnina, A. E. & Padkina, M. V. (2017). J. Mol. Struct. 1130, 395-399.]) and 7-aza­bicyclo­[2.2.1]heptane (7-aza­norbornane) (Britvin & Rumyantsev, 2017[Britvin, S. N. & Rumyantsev, A. M. (2017). Acta Cryst. E73, 1385-1388.]). In the course of our ongoing studies of cage-like heterocyclic amines (Britvin & Lotnyk, 2015[Britvin, S. N. & Lotnyk, A. (2015). J. Am. Chem. Soc. 137, 5526-5535.]; Britvin et al., 2016[Britvin, S. N., Rumyantsev, A. M., Zobnina, A. E. & Padkina, M. V. (2016). Chem. Eur. J. pp. 14227-14235.]), we report herein for the first time the mol­ecular structure of the endo isomer of 3-amino­tropane in its proton­ated form (see Scheme). In the title compound, (1R,5S)-endo-(8-methyl-8-azoniabi­cyclo­[3.2.1]oct-3-yl)ammonium aqua­tri­chlorido­nitratocopper(II), 1, the protonated endo-3-amino­tropane skeleton (Fig. 1[link]) is charge-balanced by the [CuCl3(NO3)(H2O)]2− anion. The anion (Fig. 2[link]) is the first example of a complex in which a copper(II) centre is coordinated to both nitrate and chloride ligands (as well as water). It is noteworthy that the synthesized compound 1 contains the pure endo-3-amino­tropane isomer, whereas the starting material, 3-amino­tropane di­hydro­chloride, comprised a mixture of exo and endo isomers. Therefore, selective crystallization of 1 reported herein can be recommended as a simple and effective method for the separation of the exo and endo isomers of 3-amino­tropane.

[Scheme 1]
[Figure 1]
Figure 1
The endo-3-amino­tropane skeleton in the crystal structure of 1. The atomic numbering scheme of the tropane cage is given in accordance with IUPAC nomenclature (Pollini et al., 2006[Pollini, G. P., Benetti, S., De Risi, C. & Zanirato, V. (2006). Chem. Rev. 106, 2434-2454.]; Kim et al., 2016[Kim, N., Estrada, O., Chavez, B., Stewart, C. Jr & D'Auria, J. C. (2016). Molecules, 21. Article No. 1510.]). Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as fixed-size spheres of 0.15 Å radius.
[Figure 2]
Figure 2
The mol­ecular structure of the novel copper(II) anionic complex, [CuCl3(NO3)(H2O)]2−, in 1. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as fixed-size spheres of 0.15 Å radius.

2. Structural commentary

In the structure of 1, the bicyclic skeleton of 3-amino­tropane has a boat-like conformation with the 3-amino group located in the endo position (see Scheme[link] and Fig. 1[link]). Only five examples of structurally characterized endo isomers of 3-amino­tropane have been reported previously (Fludzinski et al., 1987[Fludzinski, P., Evrard, D. A., Bloomquist, W. E., Lacefield, W. B., Pfeifer, W., Jones, N. D., Deeter, J. B. & Cohen, M. L. (1987). J. Med. Chem. 30, 1535-1537.]; Bradley et al., 1992[Bradley, G., Ward, T. J., White, J. C., Coleman, J., Taylor, A. & Rhodes, K. F. (1992). J. Med. Chem. 35, 1515-1520.]; Collin et al., 1995[Collin, S., Moureau, F., Quintero, M. G., Vercauteren, D. P., Evrard, G. & Durant, F. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 77-84.]; Omae et al., 2002[Omae, T., Sakurai, M., Ashizawa, K. & Kajima, T. (2002). Anal. Sci. 18, 729-730.]), all of which are N-3-substituted derivatives. The detailed description of the geometry of the endo-3-amino­tropane skeleton in 1 can be found in the supporting information. The 3-amino­tropane unit has two chiral centres located at the C1 (R) and C5 (S) C atoms. The packing of the 3-amino­tropane mol­ecules in the crystal generates an inversion centre establishing the chiral balance between the alternating 3-amino­tropane units. The anionic moiety, [CuCl3(NO3)(H2O)]2−, in the structure of 1 (Fig. 2[link]) is inter­esting because it is the first reported example of a copper(II) complex coordinated by both chloride and nitrate ligands, in addition to water. The coordination of the CuII atom by nitrate and water or ammonia ligands is well documented [see, for example, the structures of Cu(NH3)4(NO3)2 (Morosin, 1976[Morosin, B. (1976). Acta Cryst. B32, 1237-1240.]; Chukanov et al., 2015[Chukanov, N. V., Britvin, S. N., Möhn, G., Pekov, I. V., Zubkova, N. V., Nestola, F., Kasatkin, A. V. & Dini, M. (2015). Mineral. Mag. 79, 613-623.]) and Cu(NO3)2(H2O)2.5 (Garaj & Gazo, 1969[Garaj, J. & Gazo, J. (1969). Chem. Zvesti, 23, 829-842.])]. In addition, a limited number of isolated chloride–aqua and chlorate–aqua complexes of CuII have been reported as both neutral clusters, e.g. [Cu(H2O)2Cl2] (Matkovic et al., 1969[Matkovic, B., Peterson, S. W. & Willett, R. D. (1969). Croat. Chem. Acta, 41, 65-72.]; Bhakay-Tamhane et al., 1980[Bhakay-Tamhane, S. N., Sequeira, A. & Chidambaram, R. (1980). Acta Cryst. B36, 2925-2929.]) and [Cu(H2O)4(ClO3)2] (Blackburn et al., 1991[Blackburn, A. C., Gallucci, J. C. & Gerkin, R. E. (1991). Acta Cryst. B47, 474-479.]), and anionic complexes, e.g. [Cu(H2O)2Cl4]2− (Begley et al., 1988[Begley, M. J., Hubberstey, P., Martindale, S. P., Moore, C. H. M. & Price, N. S. (1988). J. Chem. Res. (M), pp. 101-128.]) and [Cu(H2O)2Cl3] (Wei & Willett, 1996[Wei, M. & Willett, R. D. (1996). Inorg. Chem. 35, 6381-6385.]). Therefore, the new complex anion, viz. [CuCl3(NO3)(H2O)]2−, can be considered as a valuable contribution to the aqueous coordination chemistry of copper(II). The geometry of this unusual cluster (Fig. 2[link]) can be described as a severely distorted octa­hedron, with three Cu—Cl bonds [Cu1—Cl1 = 2.3019 (3), Cu1—Cl2 = 2.5856 (4) and Cu1–Cl3 = 2.2499 (3) Å], one Cu—OH2 bond [Cu1—OW1 = 2.0646 (10) Å] and two Cu—O bonds from the asymmetrically bonded NO3 ligand [Cu1—O1 = 1.9923 (9) Å and the very weak Cu1—O2 = 2.609 (1) Å]. Similar bonding of an NO3 group to a CuII centre, with two distinct bond lengths, has been reported, for example, in Cu(NO3)2(H2O)2.5 (Garaj & Gazo, 1969[Garaj, J. & Gazo, J. (1969). Chem. Zvesti, 23, 829-842.]), anhydrous β-Cu(NO3)2 (Troyanov et al., 1995[Troyanov, S. I., Morozov, I. V., Znamenkov, K. O. & Korenev, Yu. M. (1995). Z. Anorg. Allg. Chem. 621, 1261-1265.]) and (NH4)3[Cu(NO3)4](NO3) (Morozov et al., 1998[Morozov, I. V., Fedorova, A. A. & Troyanov, S. I. (1998). Z. Anorg. Allg. Chem. 624, 1543-1647.]).

3. Supra­molecular features

The overall integrity of the crystal structure of 1 is achieved via a complex three-dimensional network of inter­molecular hydrogen bonds (Fig. 3[link]). Three types of hydrogen bonding are observed: (i) N—H⋯O inter­actions between the protonated N atom, N8, and the water mol­ecule coordinated to the CuII atom, (ii) O—H⋯Cl inter­actions involving the same water mol­ecule located between two chloride ions and (iii) N—H⋯Cl inter­actions between the protonated amino group NH3+ and chloride ions Cl1 and Cl3 (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯OW1i 0.783 (17) 2.236 (17) 2.9600 (15) 154.0 (15)
OW1—HW1A⋯Cl1ii 0.79 (2) 2.33 (2) 3.1145 (11) 172.4 (19)
OW1—HW1B⋯Cl2iii 0.79 (2) 2.30 (2) 3.0851 (11) 179 (2)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) -x+2, -y+1, -z+1.
[Figure 3]
Figure 3
A network of hydrogen bonds maintains the structural integrity of 1. The bond lengths are given in Table 1[link].

4. Database survey

Among the 204 structures containing the tropane core in the Cambridge Structural Database (CSD, Version 5.38, latest update May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), 11 entries contain 3-amino­tropane derivatives, all of which are substituted at the 3-amino group. There are five structures in the CSD and nine in the ICSD (ICSD, 2017[ICSD (2017). Inorganic Crystal Structure Database. FIZ-Karlsruhe, Germany, and the National Institute of Standards and Technology (NIST), USA. https://www.fiz-karlsruhe.de/ecid/Internet/en/DB/icsd/.]), which contain isolated chloro–aqua complexes of copper(II) (Matkovic et al., 1969[Matkovic, B., Peterson, S. W. & Willett, R. D. (1969). Croat. Chem. Acta, 41, 65-72.]; Bhakay-Tamhane et al., 1980[Bhakay-Tamhane, S. N., Sequeira, A. & Chidambaram, R. (1980). Acta Cryst. B36, 2925-2929.]; Begley et al., 1988[Begley, M. J., Hubberstey, P., Martindale, S. P., Moore, C. H. M. & Price, N. S. (1988). J. Chem. Res. (M), pp. 101-128.]; Wei & Willett, 1996[Wei, M. & Willett, R. D. (1996). Inorg. Chem. 35, 6381-6385.]).

5. Synthesis and crystallization

106.6 mg (0.5 mmol) of 3-amino­tropane di­hydro­chloride (a mixture of the 3-exo and 3-endo isomers, Sigma–Aldrich) was dissolved in 1 ml of deionized water. 60.4 mg (0.25 mmol) of Cu(NO3)2·3H2O (reagent grade) was dissolved in another 1 ml aliquot of water. On mixing the two solutions, a transparent pale-yellow–green solution was formed. Light-green needles of 1 were grown by slow evaporation of the solution at room temperature.

6. Refinement

H atoms at the protonated N8 and N9 atoms and water mol­ecule OW1 were refined freely, whereas H atoms on C atoms were refined based on a riding model. Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula (C8H18N2)[CuCl3(NO3)(H2O)]
Mr 392.16
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 6.2464 (3), 13.5674 (6), 17.4584 (8)
β (°) 100.128 (1)
V3) 1456.50 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.06
Crystal size (mm) 0.25 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.])
No. of measured, independent and observed [I > 2σ(I)] reflections 16933, 3523, 3382
Rint 0.012
(sin θ/λ)max−1) 0.661
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.049, 1.05
No. of reflections 3523
No. of parameters 197
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.43, −0.31
Computer programs: APEX2 and SAINT (Bruker, 2015[Bruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: Apex2 (Bruker, 2015); cell refinement: Saint (Bruker, 2015); program(s) used to solve structure: ShelXT (Sheldrick, 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008) Olex2-1.2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

(1R,5S)-endo-(8-Methyl-8-azoniabicyclo[3.2.1]oct-3-yl)ammonium aquatrichloridonitratocopper(II) top
Crystal data top
(C8H18N2)[CuCl3(NO3)(H2O)]F(000) = 804
Mr = 392.16Dx = 1.788 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.2464 (3) ÅCell parameters from 9865 reflections
b = 13.5674 (6) Åθ = 2.8–35.0°
c = 17.4584 (8) ŵ = 2.06 mm1
β = 100.128 (1)°T = 150 K
V = 1456.50 (12) Å3Block, green
Z = 40.25 × 0.20 × 0.15 mm
Data collection top
Bruker APEX-II CCD
diffractometer
3523 independent reflections
Radiation source: fine-focus sealed tube3382 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
φ and ω scansθmax = 28.0°, θmin = 1.9°
Absorption correction: multi-scan
SADABS (Sheldrick, 2015)
h = 88
k = 1717
16933 measured reflectionsl = 2322
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.018H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0249P)2 + 0.617P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3523 reflectionsΔρmax = 0.43 e Å3
197 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3006 (2)0.09472 (10)0.65317 (7)0.0272 (3)
H10.18970.04520.65810.033*
C20.2156 (2)0.19808 (10)0.66403 (8)0.0296 (3)
H2A0.16620.20080.71360.036*
H2B0.09060.21010.62360.036*
C30.3811 (2)0.28074 (9)0.66170 (7)0.0255 (2)
H30.34260.33380.69490.031*
C40.6143 (2)0.24969 (10)0.69599 (7)0.0273 (2)
H4A0.71420.29060.67330.033*
H4B0.63970.26240.75150.033*
C50.66665 (19)0.14187 (10)0.68295 (7)0.0253 (2)
H50.81460.12570.70890.030*
C60.6311 (2)0.11169 (11)0.59713 (8)0.0323 (3)
H6A0.72680.05780.58920.039*
H6B0.65790.16680.56470.039*
C70.3908 (3)0.07923 (11)0.57794 (8)0.0347 (3)
H7A0.31150.11890.53610.042*
H7B0.37980.01050.56240.042*
N80.50100 (18)0.07935 (8)0.71434 (6)0.0239 (2)
C80.5664 (3)0.02653 (10)0.72557 (9)0.0375 (3)
H8A0.45080.06320.74180.056*
H8B0.69500.03130.76460.056*
H8C0.59550.05300.67740.056*
N30.3612 (2)0.32304 (9)0.58084 (7)0.0285 (2)
Cu10.77174 (2)0.33409 (2)0.41227 (2)0.02287 (5)
Cl10.45571 (5)0.24722 (2)0.41328 (2)0.03028 (7)
Cl20.84844 (5)0.40007 (2)0.55338 (2)0.03060 (7)
Cl30.60443 (6)0.45734 (2)0.33880 (2)0.03453 (8)
N10.94979 (18)0.15675 (8)0.40161 (7)0.0286 (2)
O10.94479 (15)0.21792 (7)0.45717 (5)0.02895 (19)
O20.8758 (2)0.18232 (10)0.33464 (7)0.0465 (3)
O31.0312 (2)0.07521 (9)0.41756 (10)0.0614 (4)
OW11.05693 (16)0.38867 (8)0.38441 (6)0.02756 (19)
H80.484 (3)0.1001 (12)0.7547 (10)0.024 (4)*
H3A0.374 (3)0.2818 (15)0.5454 (11)0.040 (5)*
HW1A1.164 (3)0.3573 (15)0.3938 (11)0.042 (5)*
H3B0.234 (4)0.3451 (15)0.5664 (12)0.050 (6)*
HW1B1.080 (3)0.4426 (17)0.4001 (12)0.046 (5)*
H3C0.451 (4)0.3683 (17)0.5810 (12)0.052 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0225 (6)0.0289 (6)0.0282 (6)0.0064 (5)0.0009 (5)0.0005 (5)
C20.0210 (6)0.0344 (7)0.0346 (7)0.0010 (5)0.0081 (5)0.0051 (5)
C30.0302 (6)0.0244 (6)0.0232 (5)0.0014 (5)0.0080 (5)0.0003 (4)
C40.0276 (6)0.0269 (6)0.0261 (6)0.0073 (5)0.0010 (5)0.0004 (5)
C50.0187 (5)0.0295 (6)0.0271 (6)0.0010 (5)0.0021 (4)0.0046 (5)
C60.0343 (7)0.0362 (7)0.0287 (6)0.0089 (6)0.0116 (5)0.0015 (5)
C70.0431 (8)0.0345 (7)0.0241 (6)0.0017 (6)0.0006 (5)0.0059 (5)
N80.0271 (5)0.0236 (5)0.0206 (5)0.0025 (4)0.0031 (4)0.0005 (4)
C80.0471 (8)0.0242 (6)0.0394 (7)0.0014 (6)0.0029 (6)0.0052 (5)
N30.0303 (6)0.0289 (6)0.0267 (6)0.0020 (5)0.0059 (5)0.0035 (4)
Cu10.01998 (8)0.02360 (8)0.02488 (8)0.00238 (5)0.00351 (6)0.00206 (5)
Cl10.02233 (14)0.03309 (16)0.03568 (16)0.00169 (11)0.00582 (11)0.00026 (12)
Cl20.03173 (16)0.03230 (16)0.02900 (15)0.00508 (12)0.00873 (12)0.00633 (12)
Cl30.03283 (16)0.02662 (15)0.04061 (18)0.00540 (12)0.00329 (13)0.00498 (13)
N10.0203 (5)0.0242 (5)0.0404 (6)0.0028 (4)0.0033 (4)0.0055 (4)
O10.0292 (5)0.0287 (5)0.0280 (4)0.0026 (4)0.0024 (4)0.0006 (4)
O20.0488 (7)0.0601 (8)0.0312 (5)0.0034 (6)0.0087 (5)0.0084 (5)
O30.0518 (7)0.0272 (6)0.0952 (11)0.0092 (5)0.0145 (7)0.0147 (6)
OW10.0238 (5)0.0249 (5)0.0342 (5)0.0009 (4)0.0057 (4)0.0006 (4)
Geometric parameters (Å, º) top
C1—H10.9800C7—H7B0.9700
C1—C21.5231 (19)N8—C81.4970 (17)
C1—C71.5318 (19)N8—H80.783 (17)
C1—N81.5103 (16)C8—H8A0.9600
C2—H2A0.9700C8—H8B0.9600
C2—H2B0.9700C8—H8C0.9600
C2—C31.5305 (18)N3—H3A0.85 (2)
C3—H30.9800N3—H3B0.85 (2)
C3—C41.5333 (18)N3—H3C0.83 (2)
C3—N31.5086 (16)Cu1—Cl12.3019 (3)
C4—H4A0.9700Cu1—Cl22.5856 (4)
C4—H4B0.9700Cu1—Cl32.2499 (3)
C4—C51.5247 (18)Cu1—O11.9923 (9)
C5—H50.9800Cu1—OW12.0646 (10)
C5—C61.5313 (18)N1—O11.2811 (15)
C5—N81.5132 (16)N1—O21.2292 (17)
C6—H6A0.9700N1—O31.2289 (16)
C6—H6B0.9700OW1—HW1A0.79 (2)
C6—C71.543 (2)OW1—HW1B0.79 (2)
C7—H7A0.9700
C2—C1—H1110.7C6—C7—H7A110.7
C2—C1—C7114.95 (11)C6—C7—H7B110.7
C7—C1—H1110.7H7A—C7—H7B108.8
N8—C1—H1110.7C1—N8—C5101.59 (9)
N8—C1—C2107.63 (10)C1—N8—H8110.9 (12)
N8—C1—C7101.74 (10)C5—N8—H8109.7 (12)
C1—C2—H2A108.6C8—N8—C1113.48 (10)
C1—C2—H2B108.6C8—N8—C5113.39 (11)
C1—C2—C3114.80 (10)C8—N8—H8107.7 (12)
H2A—C2—H2B107.5N8—C8—H8A109.5
C3—C2—H2A108.6N8—C8—H8B109.5
C3—C2—H2B108.6N8—C8—H8C109.5
C2—C3—H3106.6H8A—C8—H8B109.5
C2—C3—C4112.83 (10)H8A—C8—H8C109.5
C4—C3—H3106.6H8B—C8—H8C109.5
N3—C3—C2111.03 (11)C3—N3—H3A115.4 (13)
N3—C3—H3106.6C3—N3—H3B109.3 (15)
N3—C3—C4112.70 (10)C3—N3—H3C109.5 (15)
C3—C4—H4A108.6H3A—N3—H3B102.9 (18)
C3—C4—H4B108.6H3A—N3—H3C109.8 (19)
H4A—C4—H4B107.5H3B—N3—H3C110 (2)
C5—C4—C3114.79 (10)Cl1—Cu1—Cl2100.684 (12)
C5—C4—H4A108.6Cl3—Cu1—Cl194.122 (14)
C5—C4—H4B108.6Cl3—Cu1—Cl2105.990 (13)
C4—C5—H5110.8O1—Cu1—Cl189.92 (3)
C4—C5—C6113.86 (11)O1—Cu1—Cl284.38 (3)
C6—C5—H5110.8O1—Cu1—Cl3167.91 (3)
N8—C5—C4107.79 (10)O1—Cu1—OW186.88 (4)
N8—C5—H5110.8OW1—Cu1—Cl1164.17 (3)
N8—C5—C6102.33 (10)OW1—Cu1—Cl294.43 (3)
C5—C6—H6A110.8OW1—Cu1—Cl386.14 (3)
C5—C6—H6B110.8O2—N1—O1118.83 (11)
C5—C6—C7104.90 (11)O3—N1—O1118.42 (13)
H6A—C6—H6B108.8O3—N1—O2122.75 (13)
C7—C6—H6A110.8N1—O1—Cu1107.35 (8)
C7—C6—H6B110.8Cu1—OW1—HW1A119.7 (15)
C1—C7—C6105.36 (10)Cu1—OW1—HW1B111.5 (15)
C1—C7—H7A110.7HW1A—OW1—HW1B109 (2)
C1—C7—H7B110.7
C1—C2—C3—C433.81 (15)C6—C5—N8—C146.59 (12)
C1—C2—C3—N393.81 (13)C6—C5—N8—C875.54 (13)
C2—C1—C7—C686.42 (13)C7—C1—C2—C356.77 (15)
C2—C1—N8—C574.06 (12)C7—C1—N8—C547.14 (12)
C2—C1—N8—C8163.87 (11)C7—C1—N8—C874.93 (13)
C2—C3—C4—C533.45 (15)N8—C1—C2—C355.76 (14)
C3—C4—C5—C657.78 (14)N8—C1—C7—C629.54 (13)
C3—C4—C5—N855.00 (13)N8—C5—C6—C727.56 (13)
C4—C5—C6—C788.46 (13)N3—C3—C4—C593.28 (13)
C4—C5—N8—C173.74 (12)O2—N1—O1—Cu17.68 (14)
C4—C5—N8—C8164.13 (11)O3—N1—O1—Cu1173.23 (11)
C5—C6—C7—C11.22 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···OW1i0.783 (17)2.236 (17)2.9600 (15)154.0 (15)
OW1—HW1A···Cl1ii0.79 (2)2.33 (2)3.1145 (11)172.4 (19)
OW1—HW1B···Cl2iii0.79 (2)2.30 (2)3.0851 (11)179 (2)
Symmetry codes: (i) x1/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+2, y+1, z+1.
 

Acknowledgements

The authors thank the X-ray Diffraction Center of Saint Petersburg State University for providing instrumental resources.

Funding information

Funding for this research was provided by: Saint-Petersburg State University (grants No. 0.37.235.2015 and 3.37.222.2015).

References

First citationBegley, M. J., Hubberstey, P., Martindale, S. P., Moore, C. H. M. & Price, N. S. (1988). J. Chem. Res. (M), pp. 101–128.
First citationBhakay-Tamhane, S. N., Sequeira, A. & Chidambaram, R. (1980). Acta Cryst. B36, 2925–2929.  CrossRef CAS IUCr Journals
First citationBlackburn, A. C., Gallucci, J. C. & Gerkin, R. E. (1991). Acta Cryst. B47, 474–479.  CrossRef CAS IUCr Journals
First citationBradley, G., Ward, T. J., White, J. C., Coleman, J., Taylor, A. & Rhodes, K. F. (1992). J. Med. Chem. 35, 1515–1520.  CSD CrossRef PubMed CAS Web of Science
First citationBritvin, S. N. & Lotnyk, A. (2015). J. Am. Chem. Soc. 137, 5526–5535.  Web of Science CSD CrossRef CAS PubMed
First citationBritvin, S. N. & Rumyantsev, A. M. (2017). Acta Cryst. E73, 1385–1388.  CSD CrossRef IUCr Journals
First citationBritvin, S. N., Rumyantsev, A. M., Zobnina, A. E. & Padkina, M. V. (2016). Chem. Eur. J. pp. 14227–14235.  Web of Science CSD CrossRef
First citationBritvin, S. N., Rumyantsev, A. M., Zobnina, A. E. & Padkina, M. V. (2017). J. Mol. Struct. 1130, 395–399.  Web of Science CSD CrossRef CAS
First citationBruker (2015). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChukanov, N. V., Britvin, S. N., Möhn, G., Pekov, I. V., Zubkova, N. V., Nestola, F., Kasatkin, A. V. & Dini, M. (2015). Mineral. Mag. 79, 613–623.  CrossRef CAS
First citationCollin, S., Moureau, F., Quintero, M. G., Vercauteren, D. P., Evrard, G. & Durant, F. (1995). J. Chem. Soc. Perkin Trans. 2, pp. 77–84.  CSD CrossRef Web of Science
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals
First citationFludzinski, P., Evrard, D. A., Bloomquist, W. E., Lacefield, W. B., Pfeifer, W., Jones, N. D., Deeter, J. B. & Cohen, M. L. (1987). J. Med. Chem. 30, 1535–1537.  CSD CrossRef CAS PubMed Web of Science
First citationGaraj, J. & Gazo, J. (1969). Chem. Zvesti, 23, 829–842.  CAS
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals
First citationICSD (2017). Inorganic Crystal Structure Database. FIZ-Karlsruhe, Germany, and the National Institute of Standards and Technology (NIST), USA. https://www.fiz-karlsruhe.de/ecid/Internet/en/DB/icsd/.
First citationKim, N., Estrada, O., Chavez, B., Stewart, C. Jr & D'Auria, J. C. (2016). Molecules, 21. Article No. 1510.
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals
First citationMatkovic, B., Peterson, S. W. & Willett, R. D. (1969). Croat. Chem. Acta, 41, 65–72.  CAS
First citationMorosin, B. (1976). Acta Cryst. B32, 1237–1240.  CrossRef CAS IUCr Journals
First citationMorozov, I. V., Fedorova, A. A. & Troyanov, S. I. (1998). Z. Anorg. Allg. Chem. 624, 1543–1647.  CrossRef CAS
First citationOmae, T., Sakurai, M., Ashizawa, K. & Kajima, T. (2002). Anal. Sci. 18, 729–730.  Web of Science CSD CrossRef PubMed CAS
First citationPollini, G. P., Benetti, S., De Risi, C. & Zanirato, V. (2006). Chem. Rev. 106, 2434–2454.  Web of Science CrossRef PubMed CAS
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationTroyanov, S. I., Morozov, I. V., Znamenkov, K. O. & Korenev, Yu. M. (1995). Z. Anorg. Allg. Chem. 621, 1261–1265.  CrossRef CAS
First citationWei, M. & Willett, R. D. (1996). Inorg. Chem. 35, 6381–6385.  CSD CrossRef PubMed CAS Web of Science
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds