Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of meneghinite (CuPb13Sb7S24), from the Bottino mine in the Apuan Alps (Italy), has been solved and refined as an incommensurate structure in four-dimensional superspace. The structure is orthorhombic, superspace group Pnma(0β0)00s, cell parameters a = 24.0549 (3), b = 4.1291 (6), c = 11.3361 (16) Å, modulation vector q = 0.5433 (4)b*. The structure was refined from 6604 reflections to a final R = 0.0479. The model includes modulation of both atomic positions and displacement parameters, as well as occupational waves. The driving forces stabilizing the modulated structure of meneghinite are linked to the occupation modulation of Cu and some of the Pb atoms. As a consequence of the Cu/[] and Pb/Sb modulations, three- to sevenfold coordinations of the M cations (Pb/Sb) occur in different parts of the structure. The almost bimodal distribution of the occupation of Cu/[] and Pb/Sb at M5 conforms with the coupled substitution Sb3+ + [] → Pb2+ + Cu+, thus corroborating the hypothesis deduced previously for the incorporation of copper in the meneghinite structure. The very small departure (∼0.54 versus 0.50) from the commensurate value of the modulation raises the question of whether other sulfosalts considered superstructures have been properly described, and, in this light, if incommensurate modulation in sulfosalts could be much more common than thought.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520617002657/xk5035sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520617002657/xk5035Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520617002657/xk5035sup3.pdf
Supporting tables

B-IncStrDB reference: 13202EGzpbI

CCDC reference: 1533002

Computing details top

(I) top
Crystal data top
Cu0.966Pb13.196S24Sb6.804V = 1126.0 (2) Å3
Mr = 4393.3Z = 1
Orthorhombic, Pnma(0β0)00sF(000) = 1839
q = 0.543300b*Dx = 6.479 Mg m3
a = 24.0549 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 4.1291 (6) ŵ = 54.69 mm1
c = 11.3361 (16) ÅT = 297 K
† Symmetry operations: (1) x1, x2, x3, x4; (2) −x1+1/2, −x2, x3+1/2, −x4+1/2; (3) −x1, x2+1/2, −x3, x4+1/2; (4) x1+1/2, −x2+1/2, −x3+1/2, −x4; (5) −x1, −x2, −x3, −x4; (6) x1+1/2, x2, −x3+1/2, x4+1/2; (7) x1, −x2+1/2, x3, −x4+1/2; (8) −x1+1/2, x2+1/2, x3+1/2, x4.

Data collection top
Oxford Diffraction CCD
diffractometer
6604 independent reflections
Radiation source: X-ray tube4696 reflections with I > 3σ(I)
Graphite monochromator
Refinement top
Refinement on F2216 parameters
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.11578 constraints
S = 1.97Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
6604 reflections(Δ/σ)max = 0.807
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.247 (2)0.250.209 (5)0.0388 (11)0.239 (4)
Pb10.125229 (14)0.250.15769 (3)0.02675 (11)
Pb20.064759 (19)0.750.46575 (4)0.02537 (16)0.4800 (17)
Sb20.064759 (19)0.750.46575 (4)0.02537 (16)0.5199 (17)
Pb30.025121 (19)0.250.15251 (4)0.02636 (16)0.5246 (18)
Sb30.025121 (19)0.250.15251 (4)0.02636 (16)0.4754 (18)
Pb40.215255 (15)0.250.48311 (4)0.03405 (13)
Pb50.15041 (2)0.750.21855 (5)0.02817 (16)0.2841
Sb50.15041 (2)0.750.21855 (5)0.02817 (16)0.7159
S10.15229 (8)0.750.33925 (19)0.0214 (6)
S20.06368 (9)0.250.02736 (18)0.0214 (6)
S30.23688 (9)0.750.3373 (2)0.0244 (6)
S40.02045 (9)0.750.28375 (19)0.0240 (6)
S50.10735 (9)0.250.5944 (2)0.0263 (6)
S60.18416 (9)0.250.0896 (2)0.0353 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0318 (17)0.0351 (18)0.050 (2)00.0051 (14)0
Pb10.02884 (19)0.02372 (18)0.0277 (2)00.00114 (13)0
Pb20.0275 (3)0.0243 (3)0.0244 (3)00.00051 (18)0
Sb20.0275 (3)0.0243 (3)0.0244 (3)00.00051 (18)0
Pb30.0291 (3)0.0243 (3)0.0257 (3)00.00392 (18)0
Sb30.0291 (3)0.0243 (3)0.0257 (3)00.00392 (18)0
Pb40.02498 (19)0.0333 (2)0.0439 (3)00.00206 (15)0
Pb50.0236 (3)0.0335 (3)0.0275 (3)00.0003 (2)0
Sb50.0236 (3)0.0335 (3)0.0275 (3)00.0003 (2)0
S10.0222 (10)0.0230 (10)0.0189 (10)00.0000 (8)0
S20.0240 (10)0.0214 (10)0.0188 (10)00.0008 (8)0
S30.0255 (10)0.0248 (10)0.0229 (11)00.0033 (8)0
S40.0252 (10)0.0260 (10)0.0207 (11)00.0007 (8)0
S50.0273 (10)0.0279 (11)0.0237 (11)00.0002 (8)0
S60.0259 (11)0.0552 (15)0.0247 (12)00.0001 (9)0
Bond lengths (Å) top
AverageMinimumMaximum
Cu1—Pb4i3.22 (9)3.14 (14)3.32 (14)
Cu1—Pb4ii3.35 (8)3.10 (11)3.46 (11)
Cu1—Pb4iii3.35 (8)3.10 (11)3.46 (11)
Cu1—Pb5iv3.29 (8)3.16 (10)3.34 (10)
Cu1—Pb53.29 (8)3.15 (10)3.34 (10)
Cu1—S1iii2.41 (8)2.39 (13)2.45 (13)
Cu1—S3iv2.36 (8)2.29 (9)2.52 (9)
Cu1—S32.37 (8)2.29 (9)2.52 (9)
Cu1—S62.42 (9)2.29 (13)2.48 (13)
Pb1—S1iv2.988 (3)2.949 (4)3.042 (4)
Pb1—S12.988 (3)2.949 (4)3.042 (4)
Pb1—S2v2.939 (3)2.859 (4)2.987 (4)
Pb1—S2vi2.939 (3)2.859 (4)2.987 (4)
Pb1—S4v2.901 (4)2.891 (6)2.907 (6)
Pb2—Pb2vii3.7609 (11)3.7302 (13)3.9507 (13)
Pb2—Pb2viii3.7626 (11)3.7302 (13)3.9506 (13)
Pb2—Sb2000
Pb2—S12.587 (3)2.445 (6)2.673 (6)
Pb2—S4v3.044 (4)2.890 (5)3.342 (5)
Pb2—S4vi3.045 (4)2.890 (5)3.337 (5)
Pb2—S52.802 (4)2.496 (4)2.983 (4)
Pb2—S5ix2.803 (4)2.490 (4)2.983 (4)
Sb2—S12.529 (3)2.411 (6)2.660 (6)
Sb2—S52.684 (4)2.427 (4)2.982 (4)
Sb2—S5ix2.686 (4)2.427 (4)2.983 (4)
Pb3—Sb3000
Pb3—Pb5iv3.6940 (11)3.6708 (13)3.7470 (13)
Pb3—Pb53.6944 (11)3.6708 (13)3.7480 (13)
Pb3—S22.597 (3)2.462 (6)2.680 (6)
Pb3—S2v3.010 (3)2.936 (4)3.199 (4)
Pb3—S2vi3.010 (3)2.936 (4)3.200 (4)
Pb3—S4iv2.838 (4)2.517 (4)3.013 (4)
Pb3—S42.838 (4)2.520 (4)3.013 (4)
Sb3—S22.544 (3)2.438 (6)2.665 (6)
Sb3—S4iv2.717 (4)2.452 (4)2.993 (4)
Sb3—S42.717 (4)2.452 (4)2.994 (4)
Pb4—S1iv3.037 (3)2.890 (4)3.137 (4)
Pb4—S13.037 (3)2.890 (4)3.136 (4)
Pb4—S3x2.948 (4)2.830 (4)3.076 (4)
Pb4—S3xi2.947 (4)2.830 (4)3.076 (4)
Pb4—S52.893 (4)2.843 (6)2.953 (6)
Pb5—Sb5000
Pb5—S32.519 (4)2.429 (6)2.596 (6)
Pb5—S5i3.047 (4)2.894 (5)3.284 (5)
Pb5—S5xii3.045 (4)2.894 (5)3.280 (5)
Pb5—S62.781 (4)2.532 (5)2.996 (5)
Pb5—S6ix2.780 (4)2.529 (5)2.996 (5)
Sb5—S32.481 (4)2.419 (6)2.596 (6)
Sb5—S62.658 (4)2.411 (5)2.996 (5)
Sb5—S6ix2.658 (4)2.411 (5)2.996 (5)
Symmetry codes: (i) x1, x2, x31, x4; (ii) x1+1/2, x2, x31/2, x4+1/2; (iii) x1+1/2, x2+1, x31/2, x4+1/2; (iv) x1, x21, x3, x4; (v) x1, x21/2, x3, x4+1/2; (vi) x1, x2+1/2, x3, x4+1/2; (vii) x1, x21/2, x3+1, x4+1/2; (viii) x1, x2+1/2, x3+1, x4+1/2; (ix) x1, x2+1, x3, x4; (x) x1, x21, x3+1, x4; (xi) x1, x2, x3+1, x4; (xii) x1, x2+1, x31, x4.
 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds