Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The three reported phases of the mononuclear macrocyclic PdII complex [PdCl2([9]aneS2O)] [(1); [9]aneS2O = 1-oxa-4,7-dithiacyclononane] were each studied up to pressures exceeding 9 GPa using high-pressure single-crystal X-ray diffraction. The α- and γ-phases both exhibit smooth compression of the unit-cell parameters with third-order Birch–Murnaghan bulk moduli of 14.4 (8) and 7.6 (6) GPa, respectively. Between 6.81 and 6.87 GPa β-[PdCl2([9]aneS2O)] was found to undergo a reversible transition to a phase denoted as β′ and characterized by a tripling of the unit-cell volume. Across the phase transition, rearrangement of the conformation of the bound macrocycle at two of the resulting three unique sites gives rise to an extensively disordered structure.

This article has 164 supporting items.


Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds