Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The sorption of americium, as Am(III), onto groundwater colloids obtained from a marl aquifer was studied in 2 × 10-2M sodium bicarbonate groundwater and 2 × 10-2M sodium chloride bicarbonate-free solutions. At the in situ groundwater pH of 8.6, the americium was strongly sorbed onto the colloids. XAFS analyses were performed on these sorbed Am species to establish the oxidation state and its near-neighbour bonding. These XAFS data, obtained at 400 mg l-1 colloid concentrations and total Am concentration of 1.53 × 10-5M (dissolved and onto colloids), indicated that Am remains trivalent, and that surface complexes are formed with the colloids without surface precipitation. This conclusion is based on the absence of Am-Am interactions in the second or third shells. The surface complexes generated by the Am(III) sorbed onto active sites are described on the basis of the XAFS data. They include the presence of about seven water molecules around the ternary surface complexes of this trivalent actinide.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds