Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The hydro­thermal reaction of 2-(quinolin-8-yl­oxy)acetonitrile and Cd(ClO4)2 yielded the noncentrosymmetric coordination complex tetra­kis­[[mu]-2-(quinolin-8-yl­oxy)acetato]­tetra­kis­[[mu]-2-(quinolin-8-yl­oxy)acetonitrile]­tetra­cadmium tetra­kis­(perchlorate) dihydrate, [Cd4(C11H8NO3)4(C11H8N2O)4](ClO4)4·2H2O. The local coordination environment around the CdII cation can be best described as a capped octa­hedron defined by two N atoms and five O atoms from three ligands. The CdII cations are linked by the ligands with Cd-O-Cd and Cd-O-C-C-O-Cd bridges, forming tetra­nuclear units, there being two independent tertranuclear units in the structure. The fourfold rotoinversion centre sits at the centre of each Cd4 core. The two perchlorate anions in the asymmetric unit are linked by the water mol­ecule through O-H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112049360/wq3022sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112049360/wq3022Isup2.hkl
Contains datablock I

CCDC reference: 895313

Comment top

The rational design and construction of novel functional metal complexes have attracted much attention, owing to their intriguing architectures and topologies (Ye & Tong et al., 2005; Hill et al., 2005; Hong, 2007) and their potential application in many fields, including ferroelectricity, magnetism, electrical conductivity, molecular adsorption, heterogeneous catalysis and fluorescence (Zhang et al., 2009; Zhang & Xiong, 2012; Nouar et al., 2008; Li et al., 2009; Yao et al., 2008). In particular, noncentrosymmetric bulk materials or polar crystals possess technologically useful properties, such as ferroelectricity, pyroelectricity, piezoelectricity, triboluminescence and nonlinear optical (NLO) function (especially second harmonic generation, SHG) (Marks & Ratner, 1995; Desiraju, 1989; Xiong & You, 2002), and SHG, piezoelectric and ferroelectric properties are of particular importance in areas such as telecommunications, optical storage, information processing and mechanical energy transfer. However, the rational design and synthesis of metal complexes crystallizing as acentric and homochiral solids still remain long-term challenges. Recent progress in the synthesis (or self-assembly) and design of novel materials based on metal–organic coordination compounds has shown that acentric and homochiral metal–organic solids can be achieved through the following protocols: (i) using asymmetric, flexible or racemic organic ligands to self-assemble with metal ions; (ii) using racemic organic ligands coordinating to metal ions to result in self-resolution to obtain chiral compounds; (iii) obtaining asymmetric coordination compounds through self-assembly of metal and homochiral organic ligands (Ye & Wu et al., 2005; Xiong et al., 2000; Ye et al., 2008; Zhao et al., 2004). We are interested in hydrothermal or solvothermal reactions because they allow in situ reactions to occur without exerting synthetic control, and we have obtained a fascinating variety of acentric and novel metal–organic coordination compounds through these processes (Ye, Wu et al., 2005; Ye et al., 2008; Ye & Wang et al., 2005).

A series of cadmium coordination polymers containing carboxylate ligands have been reported (Yang et al., 2009; Zhang et al., 2012; Zhou et al., 2011; Nie & Wang, 2011; Han et al., 2012; Wang et al., 2012) and, compared with the above-mentioned cases, seven-coordinated complexes crystallizing in noncentrosymmetric space groups are rare. We report here the synthesis and crystal structure of an acentric seven-coordinated tetranuclear cadmium coordination compound, tetrakis[µ-2-(quinolin-8-yloxy)acetato]tetrakis[µ-2-(quinolin-8-yloxy)acetonitrile]tetracadmium tetrakis(perchlorate) dihydrate, (I).

Compound (I) has an asymmetric unit containing two crystallographically unique CdII cations, two 2-(quinolin-8-yloxy)acetate anions, two 2-(quinolin-8-yloxy)acetonitrile molecules, two perchlorate anions and a water molecule (Fig. 1). X-ray analysis of (I) reveals that half of the cyano groups of 2-(quinolin-8-yloxy)acetonitrile were hydrolyzed in situ, leading to the formation of carboxylate groups. Three O atoms (O14, O15 and O16) in one of the perchlorate anions are disordered. The local coordination environments around the two CdII cations are similar and are best described as capped octahedra, with coordination from two N atoms and five O atoms from one 2-(quinolin-8-yloxy)acetonitrile and two 2-(quinolin-8-yloxy)acetate ligands. The 2-(quinolin-8-yloxy)acetonitrile ligand coordinates to one CdII atom through the O and ring N atom to form a stable five-membered chelate ring (N2/Cd1/O4/C27/C28 and N2/Cd2/O15/C17/C16), while the cyano group of the 2-(quinolin-8-yloxy)acetonitrile ligand is not coordinated.

The coordination mode of the 2-(quinolin-8-yloxy)acetate ligand is more complex than that of the 2-(quinolin-8-yloxy)acetonitrile ligand. In addition to the O and N atoms chelating the CdII centre, two carboxylate O atoms are also coordinated to the CdII centre to form two five-membered chelate rings (O6/Cd1/O77/C43/C44 and O77/Cd1/N5/C38/C39, and O1/Cd2/O2/C11/C10 and O1/Cd2/N1/C5/C6) and one four-membered chelate ring (O5A/Cd1/O6A/C44 and O2C/Cd2/O3C/C11). Thus, the seven-coordinated CdII coordination environment is fulfilled by one O atom and one N atom from one 2-(quinolin-8-yloxy)acetonitrile ligand, two O atoms of the carboxylate group of one 2-(quinolin-8-yloxy)acetate ligand, and two O atoms and one N atom from another 2-(quinolin-8-yloxy)acetate ligand, as shown in Fig. 1.

Although the two unique CdII centres show similar coordination environments, the coordination bond lengths and angles are significantly different. Atoms N1, O1, O2 and O3A around Cd1 are nearly coplanar, with a mean deviation from the plane of 0.3503 Å, while atoms N5, O5, O6 and O7A around Cd2 are also nearly coplanar, with a mean deviation from the plane of 0.3041 Å. The Cd1—O and Cd1—N bond lengths are in the ranges 2.190 (4)–2.631 (4) and 2.254 (5)-2.270 (4) Å, respectively, while the Cd2—O and Cd2—N bond lengths are in the ranges 2.219 (4)–2.573 (4) and 2.269 (4)–2.283 (4) Å, respectively. The Cd—O bond lengths are comparable with those found in [KCd2(edta)I]n (H4edta = ethylenediaminetetraacetic acid; Wang et al., 2012), which range from 2.208 (3) to 2.518 (3) Å, but the Cd—N distances are shorter than those found in [KCd2(edta)I]n [2.382 (3)–2.416 (3) Å]. Both bond lengths and angles observed in the ordered ClO4- anion are in agreement with standard values [Standard reference?], with Cl—O = 1.366 (6)–1.447 (7) Å.

The 2-(quinolin-8-yloxy)acetate anion acts as a tetradentate linker, connecting two CdII centres through the ring N atom and three O atoms of the oxyacetate group. Thus, the CdII cations at (x, y, z), (y, -x + 1, z), (-x + 1, -y + 1, z) and (-y + 1, x, -z + 2) are linked by the 2-(quinolin-8-yloxy)acetate ligand to form a tetranuclear unit (Fig. 2), which is like a disthe [Text missing?] Cd4 core. The oxyacetate group bridges the two nearest CdII cations: one of the O atoms from the oxyacetate group links the CdII cations via an O—Cd bond, and two linked CdII cations are strengthened by the oxyacetate group with a Cd—O—C—C—O—Cd bridge.

In the structure of (I), numerous intermolecular hydrogen bonds (O1W—H1W···O9, O1W—H2W···O15 and O1W—H2W···O15B; Table 1) play an important role in stabilizing the structure, linking the ions of the asymmetric unit, the water molecules and perchlorate anions. In addition, there are numerous nonclassical C—H···O hydrogen bonds (Table 1) in the structure, with C—H···O angles in the range 106–170°, and C···O and H···O distances in the ranges 2.982 (8)–3.495 (10) and 2.29–2.58 Å, respectively. The weak C23—H23···O12 and C43—H43B···O11 intramolecular hygrogen bonds link one of the perchlorate anions and part of the tetranuclear unit in the asymmetric unit. All the tetranuclear units are linked by the perchlorate anions and water molecules via weak C2—H2···O11i, C8—H8···O13ii, C10—H10A···O3iii, C12—H12···O16Biv, C13—H13···O1Wiv, C21—H21B···O3v, C32—H32A···O7vi, C41—H41···O9vii and C43—H43A···O7viii intermolecular hydrogen bonds, forming the three-dimensional structure (Fig. 3; see Table 1 for symmetry codes).

In summary, (I) crystallizes fortuitously in an acentric space group stabilised by hydrogen-bonding interactions. The hydrothermal reaction leads to in situ ligand synthesis and the formation of this novel tetranuclear CdII coordination compound. In addition, the CdII cation has a capped octahedral geometry, and coordination compounds with such a geometry for a CdII centre are extremely rare in the Cambridge Structural Database (Version?; Allen 2002).

Related literature top

For related literature, see: Allen (2002); Desiraju (1989); Han et al. (2012); Hill et al. (2005); Hong (2007); Li et al. (2009); Marks & Ratner (1995); Nie & Wang (2011); Nouar et al. (2008); Wang et al. (2012); Xiong & You (2002); Xiong et al. (2000); Yang et al. (2009); Yao et al. (2008); Ye et al. (2008); Ye, Tong & Chen (2005); Ye, Wang, Zhao & Xiong (2005); Ye, Wu, Song, Wang, Xiong & Xue (2005); Zhang & Xiong (2012); Zhang et al. (2009); Zhang, Wu, Zheng & Liu (2012); Zhao et al. (2004); Zhou et al. (2011).

Experimental top

The hydrothermal reaction of 2-(quinolin-8-yloxy)acetonitrile (1 mmol) and Cd(ClO4) (1 mmol) in the presence of water (1.5 ml) in a sealed Pyrex tube at 383 K for several days gave colourless block-shaped crystals of (I). Crystals were isolated from the solution and then washed and dried.

Refinement top

Three O atoms of the perchlorate anion were modelled as disordered over two sites. The site-occupancy factor of the major component refined to 0.55 (4). All atom lengths in the anions were restrained to reasonable distances, and restraints were also applied to the three disordered O atoms to ensure that reasonable displacement parameters were obtained. Constraints were added to give equivalent displacement parameters for the corresponding atoms of the minor and major disorder components.

H atoms were refined isotropically. H atoms on C atoms were included in calculated positions and were refined using a riding model, with C—H = 0.93 or 0.97 Å for aromatic or methylene C atoms, respectively, and with Uiso(H) = 1.2Ueq(C). The H atoms bonded to O1W were discernible in difference electron-density maps. These atoms were placed as found and allowed to refine, with the O—H distances restrained to 0.85 (1) Å and H···H distances restrained to 1.39 (1) Å. For water H atoms, Uiso(H) = 1.5Ueq(O). In total, the structure had 111 restraints imposed.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. All H atoms have been omitted for clarity.

Fig. 2. A view of the tetranuclear unit of (I).

Fig. 3. The crystal structure of (I), viewed along the c axis. All H atoms have been omitted, except for those on atom O1W. Dashed lines indicate intermolecular O1W—H···O hydrogen bonds. [Image very grainy - can a sharper plot be provided?]
Tetrakis[µ-2-(quinolin-8-yloxy)acetato]tetrakis[µ-2-(quinolin-8- yloxy)acetonitrile]tetracadmium tetrakis(perchlorate) dihydrate top
Crystal data top
[Cd4(C11H8NO3)4(C11H8N2O)4](ClO4)4·2H2ODx = 1.767 Mg m3
Mr = 2428.94Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4Cell parameters from 10477 reflections
Hall symbol: I -4θ = 3.1–27.5°
a = 27.838 (4) ŵ = 1.13 mm1
c = 11.779 (2) ÅT = 293 K
V = 9128 (2) Å3Block, colourless
Z = 40.2 × 0.2 × 0.2 mm
F(000) = 4848
Data collection top
Rigaku Mercury2
diffractometer
8258 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.075
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
ω scansh = 3635
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 3636
Tmin = 0.795, Tmax = 0.810l = 1515
47881 measured reflections180 standard reflections every 3 reflections
10477 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0495P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.002
10477 reflectionsΔρmax = 0.56 e Å3
668 parametersΔρmin = 0.34 e Å3
111 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (2)
Crystal data top
[Cd4(C11H8NO3)4(C11H8N2O)4](ClO4)4·2H2OZ = 4
Mr = 2428.94Mo Kα radiation
Tetragonal, I4µ = 1.13 mm1
a = 27.838 (4) ÅT = 293 K
c = 11.779 (2) Å0.2 × 0.2 × 0.2 mm
V = 9128 (2) Å3
Data collection top
Rigaku Mercury2
diffractometer
8258 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
Rint = 0.075
Tmin = 0.795, Tmax = 0.810180 standard reflections every 3 reflections
47881 measured reflections intensity decay: none
10477 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.103Δρmax = 0.56 e Å3
S = 1.00Δρmin = 0.34 e Å3
10477 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
668 parametersAbsolute structure parameter: 0.00 (2)
111 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.523032 (15)0.616086 (14)0.93900 (4)0.04217 (11)
O10.50675 (15)0.61697 (14)1.1405 (3)0.0494 (10)
O20.56113 (14)0.55616 (13)1.0376 (3)0.0472 (10)
O30.56552 (14)0.50741 (13)1.1839 (4)0.0492 (9)
O40.53631 (15)0.64955 (17)0.7325 (3)0.0609 (12)
N10.48034 (16)0.68182 (16)0.9920 (4)0.0403 (11)
N20.59576 (17)0.64940 (16)0.9094 (4)0.0437 (11)
N30.5496 (5)0.5753 (5)0.5093 (8)0.164 (5)
C10.4699 (2)0.7164 (2)0.9196 (6)0.0535 (15)
H10.48250.71450.84660.064*
C20.4410 (2)0.7557 (2)0.9465 (7)0.0570 (16)
H20.43470.77940.89280.068*
C30.4225 (2)0.7587 (2)1.0502 (7)0.0591 (17)
H30.40250.78431.06840.071*
C40.4327 (2)0.7240 (2)1.1326 (6)0.0476 (15)
C50.46257 (18)0.68543 (19)1.1002 (4)0.0350 (12)
C60.47488 (18)0.64998 (18)1.1788 (5)0.0385 (12)
C70.4551 (2)0.6511 (2)1.2859 (5)0.0496 (15)
H70.46210.62661.33690.059*
C80.4249 (2)0.6885 (2)1.3194 (6)0.0629 (18)
H80.41200.68901.39220.076*
C90.4145 (2)0.7237 (2)1.2450 (6)0.0568 (17)
H90.39470.74881.26820.068*
C100.5181 (2)0.57645 (19)1.2070 (5)0.0425 (13)
H10A0.48900.55921.22710.051*
H10B0.53400.58631.27650.051*
C110.5506 (2)0.5449 (2)1.1381 (5)0.0433 (13)
C120.6250 (2)0.6495 (2)0.9972 (6)0.0560 (17)
H120.61470.63551.06470.067*
C130.6710 (3)0.6697 (3)0.9928 (8)0.072 (2)
H130.69100.66871.05600.086*
C140.6858 (3)0.6906 (3)0.8973 (8)0.072 (2)
H140.71600.70490.89440.087*
C150.6563 (2)0.6911 (2)0.8016 (7)0.0594 (17)
C160.6109 (2)0.67023 (18)0.8110 (5)0.0462 (14)
C170.5799 (2)0.6695 (2)0.7156 (5)0.0532 (15)
C180.5959 (3)0.6881 (3)0.6152 (6)0.079 (2)
H180.57640.68750.55100.095*
C190.6432 (4)0.7088 (3)0.6100 (8)0.095 (3)
H190.65390.72160.54160.114*
C200.6720 (3)0.7102 (3)0.6988 (8)0.079 (2)
H200.70240.72380.69290.095*
C210.5075 (3)0.6393 (3)0.6360 (6)0.082 (2)
H21A0.50290.66850.59220.099*
H21B0.47610.62820.66070.099*
C220.5294 (4)0.6032 (5)0.5652 (8)0.112 (4)
Cd20.612382 (14)0.961270 (14)0.19432 (3)0.04009 (10)
O50.61361 (14)0.98048 (13)0.3937 (3)0.0434 (10)
O60.54604 (13)0.93311 (13)0.2875 (3)0.0458 (9)
O70.49790 (13)0.93213 (14)0.4358 (4)0.0496 (9)
O80.64871 (16)0.93304 (14)0.0049 (3)0.0514 (10)
N40.64092 (15)0.88495 (15)0.1991 (4)0.0423 (10)
N50.67877 (15)1.00501 (16)0.2419 (4)0.0378 (10)
N60.7314 (3)0.9896 (3)0.1571 (7)0.115 (3)
C230.6376 (2)0.8614 (2)0.2966 (6)0.0556 (15)
H230.62120.87600.35610.067*
C240.6571 (2)0.8165 (2)0.3154 (7)0.0660 (18)
H240.65300.80110.38490.079*
C250.6818 (2)0.7954 (2)0.2318 (7)0.065 (2)
H250.69580.76550.24350.078*
C260.6867 (2)0.8188 (2)0.1248 (6)0.0494 (15)
C270.66579 (19)0.8643 (2)0.1130 (5)0.0423 (13)
C280.6702 (2)0.8879 (2)0.0084 (5)0.0478 (15)
C290.6945 (3)0.8682 (2)0.0798 (6)0.070 (2)
H290.69730.88450.14830.084*
C300.7155 (3)0.8223 (3)0.0660 (9)0.083 (2)
H300.73210.80810.12580.100*
C310.7113 (3)0.7989 (2)0.0353 (7)0.070 (2)
H310.72550.76880.04400.084*
C320.6457 (3)0.9567 (2)0.1010 (6)0.0632 (18)
H32A0.62270.98280.09630.076*
H32B0.63480.93430.15860.076*
C330.6951 (3)0.9765 (3)0.1339 (7)0.076 (2)
C340.7131 (2)1.0162 (2)0.1669 (5)0.0513 (15)
H340.71091.00340.09420.062*
C350.7509 (2)1.0453 (2)0.1910 (6)0.0537 (15)
H350.77411.05150.13610.064*
C360.75459 (19)1.0654 (2)0.2963 (6)0.0513 (15)
H360.78031.08550.31300.062*
C370.71982 (18)1.05583 (19)0.3795 (5)0.0390 (13)
C380.68234 (18)1.02470 (18)0.3473 (5)0.0368 (12)
C390.64666 (18)1.01325 (18)0.4313 (5)0.0401 (12)
C400.6480 (2)1.0331 (2)0.5347 (5)0.0489 (14)
H400.62431.02590.58780.059*
C410.6855 (2)1.0648 (2)0.5624 (6)0.0549 (15)
H410.68611.07860.63430.066*
C420.7205 (2)1.0759 (2)0.4884 (6)0.0541 (16)
H420.74501.09680.50930.065*
C430.57017 (18)0.9741 (2)0.4575 (5)0.0420 (13)
H43A0.55581.00510.47410.050*
H43B0.57700.95800.52870.050*
C440.53637 (19)0.94426 (19)0.3874 (5)0.0401 (13)
Cl10.60467 (7)0.86489 (7)0.62933 (16)0.0695 (5)
O90.6258 (3)0.8249 (2)0.6794 (7)0.133 (3)
O100.5717 (3)0.8859 (2)0.7072 (6)0.120 (2)
O110.6394 (2)0.8977 (3)0.6031 (8)0.149 (3)
O120.5784 (2)0.8534 (3)0.5320 (5)0.117 (2)
Cl20.84046 (8)0.86683 (7)0.81348 (17)0.0806 (5)
O130.8297 (3)0.8870 (2)0.9199 (5)0.122 (2)
O140.8882 (4)0.8483 (7)0.8260 (17)0.135 (6)0.435 (12)
O150.8161 (8)0.8266 (7)0.7711 (18)0.136 (7)0.435 (12)
O160.8503 (8)0.9054 (6)0.7378 (17)0.106 (6)0.435 (12)
O14B0.8430 (6)0.8164 (3)0.8210 (15)0.125 (5)0.565 (12)
O15B0.7955 (3)0.8758 (5)0.7556 (10)0.123 (5)0.565 (12)
O16B0.8747 (6)0.8910 (6)0.7473 (13)0.128 (6)0.565 (12)
O1W0.7277 (3)0.8093 (3)0.6219 (9)0.172 (4)
H1W0.70020.81930.62990.258*
H2W0.74040.83530.63360.258*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0478 (2)0.0402 (2)0.0385 (2)0.0055 (2)0.0074 (2)0.00281 (19)
O10.063 (3)0.046 (2)0.039 (2)0.016 (2)0.0066 (18)0.0036 (19)
O20.050 (2)0.042 (2)0.050 (3)0.0109 (18)0.0050 (19)0.0074 (19)
O30.061 (2)0.043 (2)0.044 (2)0.0084 (18)0.002 (2)0.010 (2)
O40.058 (3)0.080 (3)0.044 (2)0.014 (2)0.001 (2)0.019 (2)
N10.037 (2)0.036 (2)0.048 (3)0.001 (2)0.001 (2)0.004 (2)
N20.048 (3)0.040 (3)0.043 (3)0.003 (2)0.003 (2)0.003 (2)
N30.181 (11)0.205 (13)0.106 (8)0.067 (10)0.006 (8)0.039 (8)
C10.058 (4)0.047 (3)0.056 (4)0.006 (3)0.003 (3)0.009 (3)
C20.066 (4)0.042 (3)0.063 (4)0.009 (3)0.015 (4)0.003 (3)
C30.052 (4)0.042 (3)0.084 (5)0.009 (3)0.010 (4)0.011 (4)
C40.037 (3)0.045 (3)0.061 (4)0.001 (3)0.006 (3)0.013 (3)
C50.032 (3)0.035 (3)0.039 (3)0.004 (2)0.004 (2)0.004 (2)
C60.039 (3)0.036 (3)0.040 (3)0.003 (2)0.006 (2)0.002 (2)
C70.060 (4)0.048 (3)0.042 (4)0.003 (3)0.004 (3)0.007 (3)
C80.064 (4)0.065 (4)0.060 (4)0.003 (3)0.024 (4)0.016 (4)
C90.049 (4)0.051 (4)0.071 (4)0.002 (3)0.012 (3)0.019 (3)
C100.051 (3)0.041 (3)0.035 (3)0.000 (3)0.003 (3)0.001 (3)
C110.038 (3)0.042 (3)0.050 (4)0.006 (2)0.002 (3)0.002 (3)
C120.065 (4)0.046 (4)0.057 (4)0.004 (3)0.001 (3)0.005 (3)
C130.063 (5)0.061 (5)0.092 (6)0.001 (4)0.020 (4)0.006 (4)
C140.064 (5)0.061 (5)0.092 (6)0.016 (4)0.010 (4)0.024 (4)
C150.059 (4)0.050 (4)0.069 (5)0.006 (3)0.014 (4)0.015 (4)
C160.055 (3)0.034 (3)0.049 (3)0.003 (2)0.015 (3)0.001 (3)
C170.063 (4)0.051 (3)0.046 (4)0.004 (3)0.003 (3)0.005 (3)
C180.093 (6)0.086 (6)0.059 (4)0.014 (5)0.005 (4)0.022 (4)
C190.119 (8)0.083 (6)0.084 (6)0.024 (5)0.042 (6)0.026 (5)
C200.087 (6)0.073 (5)0.077 (6)0.021 (4)0.026 (5)0.000 (5)
C210.073 (5)0.110 (7)0.064 (5)0.007 (5)0.019 (4)0.037 (5)
C220.132 (9)0.152 (10)0.052 (5)0.028 (8)0.000 (6)0.018 (6)
Cd20.0405 (2)0.0410 (2)0.0388 (2)0.00297 (19)0.00407 (18)0.00562 (19)
O50.038 (2)0.051 (2)0.041 (2)0.0068 (17)0.0113 (18)0.0053 (17)
O60.046 (2)0.049 (2)0.042 (2)0.0065 (18)0.0043 (18)0.0077 (18)
O70.038 (2)0.059 (2)0.052 (2)0.0059 (18)0.006 (2)0.007 (2)
O80.073 (3)0.043 (2)0.038 (2)0.009 (2)0.016 (2)0.0021 (18)
N40.041 (2)0.043 (2)0.044 (3)0.004 (2)0.002 (2)0.001 (2)
N50.038 (2)0.039 (2)0.037 (3)0.003 (2)0.003 (2)0.004 (2)
N60.131 (7)0.093 (6)0.121 (7)0.011 (5)0.067 (6)0.007 (5)
C230.053 (4)0.055 (4)0.058 (4)0.003 (3)0.003 (3)0.008 (3)
C240.065 (4)0.055 (4)0.078 (5)0.004 (3)0.017 (4)0.009 (4)
C250.054 (4)0.041 (3)0.100 (6)0.003 (3)0.021 (4)0.002 (4)
C260.042 (3)0.033 (3)0.073 (5)0.001 (3)0.007 (3)0.012 (3)
C270.036 (3)0.040 (3)0.050 (3)0.005 (2)0.000 (3)0.008 (3)
C280.048 (3)0.036 (3)0.059 (4)0.004 (3)0.007 (3)0.011 (3)
C290.086 (5)0.050 (4)0.073 (5)0.010 (4)0.033 (4)0.006 (4)
C300.081 (5)0.067 (5)0.101 (7)0.008 (4)0.033 (5)0.034 (5)
C310.066 (4)0.046 (4)0.099 (6)0.006 (3)0.007 (4)0.022 (4)
C320.081 (5)0.061 (4)0.048 (4)0.014 (4)0.011 (3)0.002 (3)
C330.104 (6)0.056 (4)0.069 (5)0.012 (4)0.031 (5)0.000 (4)
C340.051 (3)0.064 (4)0.039 (3)0.003 (3)0.008 (3)0.005 (3)
C350.046 (3)0.060 (4)0.055 (4)0.010 (3)0.013 (3)0.009 (4)
C360.034 (3)0.050 (3)0.070 (4)0.012 (3)0.003 (3)0.009 (3)
C370.030 (3)0.035 (3)0.053 (3)0.001 (2)0.005 (3)0.006 (3)
C380.031 (3)0.033 (3)0.047 (3)0.007 (2)0.000 (2)0.001 (2)
C390.033 (3)0.036 (3)0.051 (3)0.000 (2)0.001 (3)0.003 (3)
C400.050 (3)0.059 (4)0.038 (3)0.004 (3)0.006 (3)0.006 (3)
C410.057 (4)0.061 (4)0.046 (4)0.007 (3)0.004 (3)0.020 (3)
C420.048 (3)0.052 (4)0.063 (4)0.005 (3)0.009 (3)0.011 (3)
C430.034 (3)0.049 (3)0.043 (3)0.002 (2)0.001 (2)0.001 (3)
C440.036 (3)0.039 (3)0.045 (3)0.002 (2)0.002 (3)0.010 (3)
Cl10.0681 (11)0.0801 (12)0.0604 (11)0.0011 (10)0.0022 (9)0.0197 (9)
O90.146 (6)0.120 (5)0.133 (6)0.060 (5)0.010 (5)0.042 (5)
O100.127 (5)0.133 (5)0.101 (5)0.038 (4)0.031 (4)0.010 (4)
O110.060 (4)0.181 (7)0.208 (9)0.046 (4)0.000 (5)0.074 (7)
O120.118 (5)0.173 (7)0.060 (4)0.031 (5)0.005 (3)0.007 (4)
Cl20.1076 (16)0.0773 (13)0.0570 (11)0.0033 (12)0.0203 (12)0.0115 (10)
O130.162 (6)0.129 (5)0.075 (4)0.007 (4)0.054 (4)0.029 (4)
O140.140 (12)0.121 (12)0.142 (13)0.045 (10)0.009 (11)0.032 (10)
O150.155 (15)0.118 (12)0.135 (13)0.062 (11)0.031 (11)0.046 (10)
O160.134 (14)0.098 (10)0.086 (9)0.024 (10)0.030 (11)0.015 (8)
O14B0.152 (12)0.075 (7)0.148 (12)0.024 (7)0.007 (10)0.011 (8)
O15B0.122 (10)0.155 (11)0.093 (8)0.031 (8)0.010 (7)0.010 (8)
O16B0.114 (11)0.173 (13)0.098 (9)0.073 (9)0.065 (9)0.045 (9)
O1W0.129 (6)0.131 (6)0.257 (11)0.005 (5)0.074 (7)0.006 (7)
Geometric parameters (Å, º) top
Cd1—O3i2.190 (4)O5—C431.434 (6)
Cd1—N22.254 (5)O6—C441.245 (7)
Cd1—N12.270 (4)O7—C441.259 (6)
Cd1—O22.293 (4)O7—Cd2iv2.219 (4)
Cd1—O12.416 (4)O8—C281.391 (7)
Cd1—O42.631 (4)O8—C321.413 (7)
O1—C61.355 (6)N4—C231.326 (8)
O1—C101.410 (6)N4—C271.356 (7)
O2—C111.258 (7)N5—C341.338 (7)
O3—C111.245 (6)N5—C381.361 (7)
O3—Cd1ii2.190 (4)N6—C331.106 (10)
O4—C171.349 (7)C23—C241.380 (9)
O4—C211.420 (8)C23—H230.9300
N1—C11.319 (7)C24—C251.338 (10)
N1—C51.372 (7)C24—H240.9300
N2—C121.316 (8)C25—C261.424 (10)
N2—C161.362 (7)C25—H250.9300
N3—C221.163 (14)C26—C311.374 (10)
C1—C21.394 (8)C26—C271.402 (8)
C1—H10.9300C27—C281.402 (8)
C2—C31.328 (10)C28—C291.356 (8)
C2—H20.9300C29—C301.414 (10)
C3—C41.398 (9)C29—H290.9300
C3—H30.9300C30—C311.365 (12)
C4—C51.410 (8)C30—H300.9300
C4—C91.417 (9)C31—H310.9300
C5—C61.395 (7)C32—C331.531 (11)
C6—C71.377 (8)C32—H32A0.9700
C7—C81.395 (8)C32—H32B0.9700
C7—H70.9300C34—C351.357 (8)
C8—C91.346 (10)C34—H340.9300
C8—H80.9300C35—C361.364 (9)
C9—H90.9300C35—H350.9300
C10—C111.502 (8)C36—C371.403 (8)
C10—H10A0.9700C36—H360.9300
C10—H10B0.9700C37—C421.399 (8)
C12—C131.400 (10)C37—C381.408 (7)
C12—H120.9300C38—C391.438 (8)
C13—C141.331 (10)C39—C401.338 (8)
C13—H130.9300C40—C411.407 (8)
C14—C151.394 (10)C40—H400.9300
C14—H140.9300C41—C421.343 (9)
C15—C201.394 (11)C41—H410.9300
C15—C161.396 (8)C42—H420.9300
C16—C171.416 (8)C43—C441.503 (7)
C17—C181.366 (9)C43—H43A0.9700
C18—C191.440 (11)C43—H43B0.9700
C18—H180.9300Cl1—O111.366 (6)
C19—C201.317 (12)Cl1—O91.389 (6)
C19—H190.9300Cl1—O121.396 (6)
C20—H200.9300Cl1—O101.424 (6)
C21—C221.442 (13)Cl2—O151.403 (8)
C21—H21A0.9700Cl2—O16B1.403 (7)
C21—H21B0.9700Cl2—O131.407 (5)
Cd2—O7iii2.219 (4)Cl2—O14B1.408 (7)
Cd2—N42.269 (4)Cl2—O161.421 (8)
Cd2—N52.283 (4)Cl2—O141.433 (8)
Cd2—O62.287 (4)Cl2—O15B1.447 (7)
Cd2—O52.409 (4)O1W—H1W0.8201
Cd2—O82.573 (4)O1W—H2W0.8200
O5—C391.369 (6)
O3i—Cd1—N2120.65 (15)O5—Cd2—O8155.20 (14)
O3i—Cd1—N1119.83 (15)C39—O5—C43118.7 (4)
N2—Cd1—N1100.44 (15)C39—O5—Cd2118.2 (3)
O3i—Cd1—O292.65 (15)C43—O5—Cd2118.1 (3)
N2—Cd1—O287.84 (15)C44—O6—Cd2122.8 (3)
N1—Cd1—O2133.59 (15)C44—O7—Cd2iv103.2 (4)
O3i—Cd1—O1125.68 (14)C28—O8—C32118.1 (5)
N2—Cd1—O1108.44 (16)C28—O8—Cd2114.8 (3)
N1—Cd1—O167.87 (15)C32—O8—Cd2126.9 (3)
O2—Cd1—O166.20 (13)C23—N4—C27118.3 (5)
O3i—Cd1—O470.78 (14)C23—N4—Cd2117.4 (4)
N2—Cd1—O465.48 (15)C27—N4—Cd2123.9 (4)
N1—Cd1—O492.43 (16)C34—N5—C38117.1 (5)
O2—Cd1—O4131.39 (15)C34—N5—Cd2122.7 (4)
O1—Cd1—O4158.57 (14)C38—N5—Cd2119.9 (3)
C6—O1—C10120.3 (4)N4—C23—C24124.1 (7)
C6—O1—Cd1117.2 (3)N4—C23—H23118.0
C10—O1—Cd1119.8 (3)C24—C23—H23118.0
C11—O2—Cd1123.4 (4)C25—C24—C23118.7 (7)
C11—O3—Cd1ii104.6 (4)C25—C24—H24120.6
C17—O4—C21118.2 (5)C23—C24—H24120.6
C17—O4—Cd1114.1 (3)C24—C25—C26120.0 (6)
C21—O4—Cd1126.1 (4)C24—C25—H25120.0
C1—N1—C5117.9 (5)C26—C25—H25120.0
C1—N1—Cd1121.8 (4)C31—C26—C27119.7 (7)
C5—N1—Cd1120.2 (4)C31—C26—C25122.9 (6)
C12—N2—C16118.5 (5)C27—C26—C25117.5 (6)
C12—N2—Cd1115.7 (4)N4—C27—C28120.2 (5)
C16—N2—Cd1125.7 (4)N4—C27—C26121.4 (6)
N1—C1—C2123.6 (6)C28—C27—C26118.4 (6)
N1—C1—H1118.2C29—C28—O8123.9 (6)
C2—C1—H1118.2C29—C28—C27121.7 (6)
C3—C2—C1118.8 (6)O8—C28—C27114.3 (5)
C3—C2—H2120.6C28—C29—C30119.0 (7)
C1—C2—H2120.6C28—C29—H29120.5
C2—C3—C4121.1 (6)C30—C29—H29120.5
C2—C3—H3119.4C31—C30—C29119.8 (7)
C4—C3—H3119.4C31—C30—H30120.1
C3—C4—C5117.2 (6)C29—C30—H30120.1
C3—C4—C9125.4 (6)C30—C31—C26121.4 (7)
C5—C4—C9117.3 (6)C30—C31—H31119.3
N1—C5—C6118.4 (5)C26—C31—H31119.3
N1—C5—C4121.3 (5)O8—C32—C33109.8 (6)
C6—C5—C4120.2 (5)O8—C32—H32A109.7
O1—C6—C7125.6 (5)C33—C32—H32A109.7
O1—C6—C5114.8 (5)O8—C32—H32B109.7
C7—C6—C5119.5 (5)C33—C32—H32B109.7
C6—C7—C8121.2 (6)H32A—C32—H32B108.2
C6—C7—H7119.4N6—C33—C32178.0 (9)
C8—C7—H7119.4N5—C34—C35123.7 (6)
C9—C8—C7119.2 (6)N5—C34—H34118.1
C9—C8—H8120.4C35—C34—H34118.1
C7—C8—H8120.4C34—C35—C36119.5 (6)
C8—C9—C4122.4 (6)C34—C35—H35120.2
C8—C9—H9118.8C36—C35—H35120.2
C4—C9—H9118.8C35—C36—C37120.4 (5)
O1—C10—C11107.6 (5)C35—C36—H36119.8
O1—C10—H10A110.2C37—C36—H36119.8
C11—C10—H10A110.2C42—C37—C36123.8 (6)
O1—C10—H10B110.2C42—C37—C38120.2 (5)
C11—C10—H10B110.2C36—C37—C38116.1 (5)
H10A—C10—H10B108.5N5—C38—C37123.2 (5)
O3—C11—O2122.7 (5)N5—C38—C39119.2 (5)
O3—C11—C10117.2 (5)C37—C38—C39117.6 (5)
O2—C11—C10120.2 (5)C40—C39—O5126.0 (5)
N2—C12—C13122.5 (7)C40—C39—C38121.1 (5)
N2—C12—H12118.8O5—C39—C38112.9 (5)
C13—C12—H12118.8C39—C40—C41119.4 (6)
C14—C13—C12119.3 (7)C39—C40—H40120.3
C14—C13—H13120.3C41—C40—H40120.3
C12—C13—H13120.3C42—C41—C40122.2 (6)
C13—C14—C15120.3 (7)C42—C41—H41118.9
C13—C14—H14119.8C40—C41—H41118.9
C15—C14—H14119.8C41—C42—C37119.6 (6)
C20—C15—C14121.4 (7)C41—C42—H42120.2
C20—C15—C16120.8 (7)C37—C42—H42120.2
C14—C15—C16117.8 (7)O5—C43—C44108.0 (4)
N2—C16—C15121.6 (6)O5—C43—H43A110.1
N2—C16—C17118.8 (5)C44—C43—H43A110.1
C15—C16—C17119.6 (6)O5—C43—H43B110.1
O4—C17—C18125.2 (6)C44—C43—H43B110.1
O4—C17—C16115.9 (5)H43A—C43—H43B108.4
C18—C17—C16118.9 (6)O6—C44—O7123.0 (5)
C17—C18—C19119.1 (8)O6—C44—C43121.4 (5)
C17—C18—H18120.4O7—C44—C43115.6 (5)
C19—C18—H18120.4O11—Cl1—O9109.4 (5)
C20—C19—C18122.4 (8)O11—Cl1—O12109.8 (5)
C20—C19—H19118.8O9—Cl1—O12112.7 (5)
C18—C19—H19118.8O11—Cl1—O10109.2 (5)
C19—C20—C15119.2 (7)O9—Cl1—O10109.2 (4)
C19—C20—H20120.4O12—Cl1—O10106.5 (4)
C15—C20—H20120.4O15—Cl2—O16B121.0 (11)
O4—C21—C22111.3 (7)O15—Cl2—O13122.3 (9)
O4—C21—H21A109.4O16B—Cl2—O13116.6 (7)
C22—C21—H21A109.4O15—Cl2—O14B41.4 (10)
O4—C21—H21B109.4O16B—Cl2—O14B118.6 (10)
C22—C21—H21B109.4O13—Cl2—O14B110.7 (8)
H21A—C21—H21B108.0O15—Cl2—O16118.3 (15)
N3—C22—C21176.0 (13)O16B—Cl2—O1632.7 (9)
O7iii—Cd2—N4130.02 (16)O13—Cl2—O16107.3 (10)
O7iii—Cd2—N5112.12 (15)O14B—Cl2—O16141.4 (11)
N4—Cd2—N5102.11 (15)O15—Cl2—O14101.3 (13)
O7iii—Cd2—O692.18 (14)O16B—Cl2—O1466.5 (10)
N4—Cd2—O687.13 (15)O13—Cl2—O14104.5 (8)
N5—Cd2—O6135.95 (14)O14B—Cl2—O1465.6 (9)
O7iii—Cd2—O5125.40 (14)O16—Cl2—O1499.1 (11)
N4—Cd2—O5100.29 (15)O15—Cl2—O15B63.3 (12)
N5—Cd2—O568.34 (14)O16B—Cl2—O15B104.1 (10)
O6—Cd2—O567.63 (13)O13—Cl2—O15B99.6 (6)
O7iii—Cd2—O876.17 (14)O14B—Cl2—O15B104.2 (9)
N4—Cd2—O866.29 (15)O16—Cl2—O15B75.0 (11)
N5—Cd2—O893.30 (15)O14—Cl2—O15B155.8 (9)
O6—Cd2—O8128.98 (13)H1W—O1W—H2W94.8
O3i—Cd1—O1—C6100.9 (4)O7iii—Cd2—O5—C3991.5 (4)
N2—Cd1—O1—C6104.9 (4)N4—Cd2—O5—C39110.0 (4)
N1—Cd1—O1—C610.8 (3)N5—Cd2—O5—C3910.9 (3)
O2—Cd1—O1—C6176.1 (4)O6—Cd2—O5—C39167.5 (4)
O4—Cd1—O1—C635.2 (6)O8—Cd2—O5—C3955.5 (5)
O3i—Cd1—O1—C1060.3 (4)O7iii—Cd2—O5—C4363.1 (4)
N2—Cd1—O1—C1094.0 (4)N4—Cd2—O5—C4395.4 (4)
N1—Cd1—O1—C10171.9 (4)N5—Cd2—O5—C43165.5 (4)
O2—Cd1—O1—C1015.0 (4)O6—Cd2—O5—C4312.9 (3)
O4—Cd1—O1—C10163.7 (4)O8—Cd2—O5—C43149.9 (3)
O3i—Cd1—O2—C11114.5 (4)O7iii—Cd2—O6—C44118.2 (4)
N2—Cd1—O2—C11124.9 (4)N4—Cd2—O6—C44111.9 (4)
N1—Cd1—O2—C1122.5 (5)N5—Cd2—O6—C447.4 (5)
O1—Cd1—O2—C1113.7 (4)O5—Cd2—O6—C449.5 (4)
O4—Cd1—O2—C11179.0 (4)O8—Cd2—O6—C44167.9 (4)
O3i—Cd1—O4—C17138.9 (4)O7iii—Cd2—O8—C28151.5 (4)
N2—Cd1—O4—C170.1 (4)N4—Cd2—O8—C285.3 (4)
N1—Cd1—O4—C17100.2 (4)N5—Cd2—O8—C2896.5 (4)
O2—Cd1—O4—C1762.9 (5)O6—Cd2—O8—C2870.1 (4)
O1—Cd1—O4—C1777.7 (6)O5—Cd2—O8—C2855.7 (5)
O3i—Cd1—O4—C2126.5 (6)O7iii—Cd2—O8—C3223.3 (5)
N2—Cd1—O4—C21165.3 (6)N4—Cd2—O8—C32169.6 (5)
N1—Cd1—O4—C2194.3 (6)N5—Cd2—O8—C3288.6 (5)
O2—Cd1—O4—C21102.5 (6)O6—Cd2—O8—C32104.8 (5)
O1—Cd1—O4—C21116.8 (6)O5—Cd2—O8—C32129.5 (5)
O3i—Cd1—N1—C165.6 (5)O7iii—Cd2—N4—C23136.2 (4)
N2—Cd1—N1—C169.1 (5)N5—Cd2—N4—C2390.7 (4)
O2—Cd1—N1—C1166.2 (4)O6—Cd2—N4—C2345.8 (4)
O1—Cd1—N1—C1174.9 (5)O5—Cd2—N4—C2320.9 (4)
O4—Cd1—N1—C13.6 (5)O8—Cd2—N4—C23179.0 (4)
O3i—Cd1—N1—C5111.2 (4)O7iii—Cd2—N4—C2751.6 (5)
N2—Cd1—N1—C5114.1 (4)N5—Cd2—N4—C2781.5 (4)
O2—Cd1—N1—C517.0 (5)O6—Cd2—N4—C27142.1 (4)
O1—Cd1—N1—C58.3 (4)O5—Cd2—N4—C27151.3 (4)
O4—Cd1—N1—C5179.6 (4)O8—Cd2—N4—C276.8 (4)
O3i—Cd1—N2—C12134.0 (4)O7iii—Cd2—N5—C3461.8 (5)
N1—Cd1—N2—C1291.8 (4)N4—Cd2—N5—C3481.0 (5)
O2—Cd1—N2—C1242.2 (4)O6—Cd2—N5—C34179.5 (4)
O1—Cd1—N2—C1221.8 (4)O5—Cd2—N5—C34177.4 (5)
O4—Cd1—N2—C12179.7 (5)O8—Cd2—N5—C3414.6 (5)
O3i—Cd1—N2—C1648.1 (5)O7iii—Cd2—N5—C38111.8 (4)
N1—Cd1—N2—C1686.1 (4)N4—Cd2—N5—C38105.3 (4)
O2—Cd1—N2—C16139.9 (4)O6—Cd2—N5—C386.8 (5)
O1—Cd1—N2—C16156.1 (4)O5—Cd2—N5—C388.9 (4)
O4—Cd1—N2—C161.8 (4)O8—Cd2—N5—C38171.8 (4)
C5—N1—C1—C21.5 (9)C27—N4—C23—C241.6 (9)
Cd1—N1—C1—C2175.3 (5)Cd2—N4—C23—C24174.2 (5)
N1—C1—C2—C30.4 (10)N4—C23—C24—C251.7 (10)
C1—C2—C3—C41.7 (10)C23—C24—C25—C261.6 (10)
C2—C3—C4—C51.0 (9)C24—C25—C26—C31179.5 (6)
C2—C3—C4—C9179.4 (6)C24—C25—C26—C271.5 (9)
C1—N1—C5—C6177.6 (5)C23—N4—C27—C28180.0 (5)
Cd1—N1—C5—C65.5 (6)Cd2—N4—C27—C287.9 (7)
C1—N1—C5—C42.2 (8)C23—N4—C27—C261.4 (8)
Cd1—N1—C5—C4174.8 (4)Cd2—N4—C27—C26173.5 (4)
C3—C4—C5—N10.9 (8)C31—C26—C27—N4179.5 (6)
C9—C4—C5—N1177.6 (5)C25—C26—C27—N41.4 (8)
C3—C4—C5—C6178.8 (5)C31—C26—C27—C281.0 (9)
C9—C4—C5—C62.6 (8)C25—C26—C27—C28180.0 (5)
C10—O1—C6—C77.8 (8)C32—O8—C28—C299.9 (9)
Cd1—O1—C6—C7168.8 (4)Cd2—O8—C28—C29174.8 (5)
C10—O1—C6—C5173.1 (5)C32—O8—C28—C27171.7 (5)
Cd1—O1—C6—C512.0 (6)Cd2—O8—C28—C273.6 (6)
N1—C5—C6—O14.8 (7)N4—C27—C28—C29179.5 (6)
C4—C5—C6—O1175.0 (5)C26—C27—C28—C291.0 (9)
N1—C5—C6—C7176.0 (5)N4—C27—C28—O82.0 (8)
C4—C5—C6—C74.2 (8)C26—C27—C28—O8179.4 (5)
O1—C6—C7—C8175.9 (5)O8—C28—C29—C30179.0 (6)
C5—C6—C7—C83.2 (8)C27—C28—C29—C300.7 (10)
C6—C7—C8—C90.6 (10)C28—C29—C30—C310.4 (12)
C7—C8—C9—C41.0 (10)C29—C30—C31—C260.5 (12)
C3—C4—C9—C8178.4 (6)C27—C26—C31—C300.8 (10)
C5—C4—C9—C80.0 (9)C25—C26—C31—C30179.8 (7)
C6—O1—C10—C11175.1 (5)C28—O8—C32—C3375.2 (7)
Cd1—O1—C10—C1114.6 (6)Cd2—O8—C32—C33110.1 (5)
Cd1ii—O3—C11—O26.6 (6)O8—C32—C33—N650 (28)
Cd1ii—O3—C11—C10174.8 (4)C38—N5—C34—C350.8 (9)
Cd1—O2—C11—O3167.4 (4)Cd2—N5—C34—C35174.6 (5)
Cd1—O2—C11—C1011.3 (7)N5—C34—C35—C361.1 (10)
O1—C10—C11—O3178.5 (5)C34—C35—C36—C370.4 (9)
O1—C10—C11—O22.8 (7)C35—C36—C37—C42178.4 (6)
C16—N2—C12—C130.5 (9)C35—C36—C37—C380.6 (8)
Cd1—N2—C12—C13178.6 (5)C34—N5—C38—C370.2 (8)
N2—C12—C13—C141.2 (11)Cd2—N5—C38—C37173.8 (4)
C12—C13—C14—C151.7 (11)C34—N5—C38—C39179.2 (5)
C13—C14—C15—C20176.3 (7)Cd2—N5—C38—C396.8 (6)
C13—C14—C15—C161.7 (10)C42—C37—C38—N5178.1 (5)
C12—N2—C16—C150.5 (8)C36—C37—C38—N50.9 (8)
Cd1—N2—C16—C15178.4 (4)C42—C37—C38—C392.4 (8)
C12—N2—C16—C17178.9 (5)C36—C37—C38—C39178.6 (5)
Cd1—N2—C16—C173.2 (7)C43—O5—C39—C4015.4 (8)
C20—C15—C16—N2177.0 (6)Cd2—O5—C39—C40169.8 (5)
C14—C15—C16—N21.0 (9)C43—O5—C39—C38165.7 (4)
C20—C15—C16—C171.4 (9)Cd2—O5—C39—C3811.3 (5)
C14—C15—C16—C17179.4 (6)N5—C38—C39—C40177.7 (5)
C21—O4—C17—C1811.5 (10)C37—C38—C39—C402.8 (8)
Cd1—O4—C17—C18178.1 (6)N5—C38—C39—O53.3 (7)
C21—O4—C17—C16168.0 (6)C37—C38—C39—O5176.2 (4)
Cd1—O4—C17—C161.3 (7)O5—C39—C40—C41177.4 (5)
N2—C16—C17—O42.8 (8)C38—C39—C40—C411.4 (9)
C15—C16—C17—O4178.8 (5)C39—C40—C41—C420.3 (10)
N2—C16—C17—C18176.7 (6)C40—C41—C42—C370.6 (10)
C15—C16—C17—C181.8 (9)C36—C37—C42—C41179.7 (6)
O4—C17—C18—C19179.4 (7)C38—C37—C42—C410.8 (9)
C16—C17—C18—C191.2 (11)C39—O5—C43—C44168.9 (4)
C17—C18—C19—C200.4 (13)Cd2—O5—C43—C4414.4 (5)
C18—C19—C20—C150.0 (14)Cd2—O6—C44—O7173.8 (4)
C14—C15—C20—C19178.4 (8)Cd2—O6—C44—C435.2 (7)
C16—C15—C20—C190.5 (12)Cd2iv—O7—C44—O62.8 (6)
C17—O4—C21—C2264.7 (9)Cd2iv—O7—C44—C43178.2 (4)
Cd1—O4—C21—C22100.2 (7)O5—C43—C44—O66.6 (7)
O4—C21—C22—N340 (19)O5—C43—C44—O7174.4 (4)
Symmetry codes: (i) y+1, x, z+2; (ii) y, x+1, z+2; (iii) y+3/2, x+1/2, z+1/2; (iv) y1/2, x+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O15B0.822.383.078 (15)143
O1W—H2W···O150.822.673.06 (2)111
O1W—H1W···O90.822.162.948 (10)162
C2—H2···O11v0.932.493.212 (8)135
C8—H8···O13vi0.932.383.285 (9)165
C10—H10A···O3vii0.972.453.308 (7)147
C12—H12···O16Bviii0.932.293.155 (17)154
C13—H13···O1Wviii0.932.473.258 (10)142
C21—H21B···O3i0.972.572.982 (8)106
C23—H23···O120.932.473.233 (9)139
C32—H32A···O7iii0.972.473.131 (8)126
C41—H41···O9ix0.932.583.495 (10)170
C43—H43A···O7x0.972.343.236 (7)153
C43—H43B···O110.972.573.344 (9)137
Symmetry codes: (i) y+1, x, z+2; (iii) y+3/2, x+1/2, z+1/2; (v) y1/2, x+3/2, z+3/2; (vi) y1/2, x+3/2, z+5/2; (vii) x+1, y+1, z; (viii) x+3/2, y+3/2, z+1/2; (ix) y+3/2, x+1/2, z+3/2; (x) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Cd4(C11H8NO3)4(C11H8N2O)4](ClO4)4·2H2O
Mr2428.94
Crystal system, space groupTetragonal, I4
Temperature (K)293
a, c (Å)27.838 (4), 11.779 (2)
V3)9128 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.2 × 0.2 × 0.2
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.795, 0.810
No. of measured, independent and
observed [I > 2σ(I)] reflections
47881, 10477, 8258
Rint0.075
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.103, 1.00
No. of reflections10477
No. of parameters668
No. of restraints111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.34
Absolute structureFlack (1983), with how many Friedel pairs?
Absolute structure parameter0.00 (2)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and DIAMOND (Brandenburg & Putz, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···O15B0.822.383.078 (15)142.9
O1W—H2W···O150.822.673.06 (2)111.3
O1W—H1W···O90.822.162.948 (10)162.1
C2—H2···O11i0.932.493.212 (8)135.2
C8—H8···O13ii0.932.383.285 (9)165.4
C10—H10A···O3iii0.972.453.308 (7)147.3
C12—H12···O16Biv0.932.293.155 (17)153.7
C13—H13···O1Wiv0.932.473.258 (10)142.4
C21—H21B···O3v0.972.572.982 (8)105.7
C23—H23···O120.932.473.233 (9)139.1
C32—H32A···O7vi0.972.473.131 (8)125.5
C41—H41···O9vii0.932.583.495 (10)169.8
C43—H43A···O7viii0.972.343.236 (7)152.5
C43—H43B···O110.972.573.344 (9)136.8
Symmetry codes: (i) y1/2, x+3/2, z+3/2; (ii) y1/2, x+3/2, z+5/2; (iii) x+1, y+1, z; (iv) x+3/2, y+3/2, z+1/2; (v) y+1, x, z+2; (vi) y+3/2, x+1/2, z+1/2; (vii) y+3/2, x+1/2, z+3/2; (viii) x+1, y+2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds