Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
It is observed that radial streak patterns of double Bragg scattering appear in the small-angle X-ray scattering from highly oriented pyrolytic graphite (HOPG). The intensity profile of double Bragg scattering from an HOPG sample is calculated theoretically. Assuming that the c axes of the graphite crystallites in the HOPG sample are distributed around an orientation vector and their distribution function has a Gaussian form, it is found that the intensity profile of double Bragg scattering is expressed by a double Gaussian function of the scattering angle and the azimuthal angle of the streak. The calculated intensity profile is compared with the experimental one. The method developed in this article can be used to estimate the orientational distribution of crystallites in uniaxial polycrystalline materials.

Subscribe to Acta Crystallographica Section A: Foundations and Advances

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds