Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the low-temperature (LT) modification of LaBO3 has been redetermined from single-crystal X-ray data; the resulting structure confirms the previous study [Abdullaev, Dzhafarov & Mamedov (1976). Azerbaidzhanskii Khim. Zh. pp. 117–120], but with improved precision. LT-LaBO3 crystallizes in space group Pnma and adopts the aragonite-type structure. Except for one O atom, which is situated on a general position, all other atoms (one La, one B and a second O atom) lie on mirror planes. The structure is composed of LaO9 polyhedra with an average La—O distance of 2.593 Å and trigonal BO3 groups with an average B—O distance of 1.373 Å. Slight anisotropies of the thermal vibrations of La and B atoms suggest that the electrostatic La...La and La...B inter­actions across the shared edges are weak.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806010142/wm2006sup1.cif
Contains datablocks General, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806010142/wm2006Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](O-B)= 0.004 Å
  • R factor = 0.017
  • wR factor = 0.029
  • Data-to-parameter ratio = 12.7

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Computing details top

Data collection: WinAFC (Rigaku Corporation, 1999); cell refinement: WinAFC; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: TEXSAN; program(s) used to refine structure: TEXSAN; molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: TEXSAN.

lanthanum orthoborate top
Crystal data top
LaBO3F(000) = 344
Mr = 197.71Dx = 5.299 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2nCell parameters from 50 reflections
a = 5.8744 (3) Åθ = 22.5–25.0°
b = 5.1087 (3) ŵ = 16.88 mm1
c = 8.2581 (5) ÅT = 296 K
V = 247.83 (2) Å3Irregular, colorless
Z = 40.06 × 0.05 × 0.04 mm
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.030
ω–2θ scansθmax = 30.0°
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
h = 88
Tmin = 0.418, Tmax = 0.509k = 07
1591 measured reflectionsl = 1111
396 independent reflections3 standard reflections every 150 reflections
369 reflections with F2 > 2σ(F2) intensity decay: 0.6%
Refinement top
Refinement on F w = 1/[σ2(Fo) + 0.00014|Fo|2]
R[F2 > 2σ(F2)] = 0.017(Δ/σ)max = 0.001
wR(F2) = 0.029Δρmax = 1.24 e Å3
S = 1.98Δρmin = 0.98 e Å3
369 reflectionsExtinction correction: Zachariasen (1967) type 2 Gaussian isotropic
29 parametersExtinction coefficient: 0.056 (3)
Special details top

Refinement. Refinement using reflections with F2 > 2.0 σ(F2). The weighted R-factor (wR), goodness of fit (S) and R-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La0.24319 (3)0.25000.58449 (3)0.0062 (1)
B0.5822 (7)0.25000.2611 (5)0.0079 (10)
O10.0970 (5)0.25000.0729 (3)0.0097 (7)
O20.5863 (4)0.0182 (4)0.1769 (2)0.0092 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La0.0062 (2)0.0062 (2)0.0063 (2)0.00000.00038 (6)0.0000
B0.007 (2)0.008 (2)0.009 (2)0.00000.000 (1)0.0000
O10.011 (1)0.012 (1)0.006 (1)0.00000.002 (1)0.0000
O20.0118 (9)0.0064 (9)0.0095 (9)0.0000 (8)0.0002 (7)0.0008 (8)
Geometric parameters (Å, º) top
La—O1i2.451 (3)B—O2i3.230 (4)
La—O1ii2.723 (1)B—O2x3.230 (4)
La—O1iii2.723 (1)B—Bi2.943 (6)
La—O2ii2.491 (2)B—Bv2.943 (6)
La—O2iv2.491 (2)O1—O1xiii3.045 (3)
La—O2v2.629 (2)O1—O1xiv3.045 (3)
La—O2vi2.629 (2)O1—O23.225 (3)
La—O2vii2.601 (2)O1—O2xii3.225 (3)
La—O2viii2.601 (2)O1—O2xv3.338 (3)
La—B3.331 (4)O1—O2xvi3.338 (3)
La—Bii3.508 (3)O1—O2v2.383 (3)
La—Bv3.007 (4)O1—O2vi2.383 (3)
La—Biii3.508 (3)O1—O2xvii3.705 (3)
La—Bix3.034 (2)O1—O2xviii3.705 (3)
La—Bvii3.034 (2)O1—O2xix3.097 (3)
B—O1x1.374 (5)O1—O2xx3.097 (3)
B—O13.247 (5)O2—O2xii2.368 (4)
B—O1xi3.400 (5)O2—O2x3.176 (2)
B—O21.373 (3)O2—O2vi3.176 (2)
B—O2xii1.373 (3)O2—O2xxi2.740 (4)
B—O2v3.186 (5)O2—O2xx3.098 (4)
B—O2vi3.186 (5)
O1i—La—O1ii71.88 (6)Lav—O1—Laxvii108.12 (6)
O1i—La—O1iii71.88 (6)Lav—O1—Laxxii108.12 (6)
O1i—La—O2ii145.20 (5)Lav—O1—O2v115.9 (1)
O1i—La—O2iv145.20 (5)Lav—O1—O2vi115.9 (1)
O1i—La—O2v82.06 (8)Lav—O1—Bv118.4 (2)
O1i—La—O2vi82.06 (8)Laxvii—O1—Laxxii139.4 (1)
O1i—La—O2vii94.31 (7)Laxvii—O1—O2v116.4 (1)
O1i—La—O2viii94.31 (7)Laxvii—O1—O2vi60.81 (5)
O1ii—La—O1iii139.4 (1)Laxvii—O1—Bv89.23 (10)
O1ii—La—O2ii76.28 (7)Laxxii—O1—O2v60.81 (5)
O1ii—La—O2iv142.61 (7)Laxxii—O1—O2vi116.4 (1)
O1ii—La—O2v120.96 (7)Laxxii—O1—Bv89.23 (10)
O1ii—La—O2vi70.69 (7)O2v—O1—O2vi59.6 (1)
O1ii—La—O2vii112.84 (7)Lai—O2—Laxvii105.58 (7)
O1ii—La—O2viii53.11 (7)Lai—O2—Laix136.43 (9)
O1iii—La—O2ii142.61 (7)Lai—O2—O1i118.62 (9)
O1iii—La—O2iv76.28 (7)Lai—O2—O2xii63.23 (4)
O1iii—La—O2v70.69 (7)Lai—O2—O2xxi116.77 (4)
O1iii—La—O2vi120.96 (7)Lai—O2—B91.9 (2)
O1iii—La—O2vii53.11 (7)Laxvii—O2—Laix103.98 (7)
O1iii—La—O2viii112.84 (7)Laxvii—O2—O1i124.0 (1)
O2ii—La—O2iv66.73 (9)Laxvii—O2—O2xii123.37 (5)
O2ii—La—O2v103.11 (4)Laxvii—O2—O2xxi56.63 (5)
O2ii—La—O2vi74.42 (7)Laxvii—O2—B128.0 (2)
O2ii—La—O2vii110.91 (5)Laix—O2—O1i66.08 (6)
O2ii—La—O2viii77.14 (5)Laix—O2—O2xii121.79 (4)
O2iv—La—O2v74.42 (7)Laix—O2—O2xxi58.21 (4)
O2iv—La—O2vi103.11 (4)Laix—O2—B94.4 (2)
O2iv—La—O2vii77.14 (5)O1i—O2—O2xii60.20 (6)
O2iv—La—O2viii110.91 (5)O1i—O2—O2xxi119.80 (6)
O2v—La—O2vi53.55 (9)O2xii—O2—O2xxi180.0
O2v—La—O2vii121.32 (2)O2xxi—O2—B149.6 (2)
O2v—La—O2viii173.98 (8)O1i—B—O2120.3 (2)
O2vi—La—O2vii173.98 (8)O1i—B—O2xii120.3 (2)
O2vi—La—O2viii121.32 (2)O2—B—O2xii119.1 (3)
O2vii—La—O2viii63.59 (9)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z+1/2; (vi) x1/2, y, z+1/2; (vii) x+1, y+1/2, z+1; (viii) x+1, y, z+1; (ix) x+1, y1/2, z+1; (x) x+1/2, y, z+1/2; (xi) x+1, y, z; (xii) x, y+1/2, z; (xiii) x, y+1/2, z; (xiv) x, y1/2, z; (xv) x1, y, z; (xvi) x1, y+1/2, z; (xvii) x+1/2, y, z1/2; (xviii) x+1/2, y+1/2, z1/2; (xix) x+1, y+1/2, z; (xx) x+1, y, z; (xxi) x, y1/2, z; (xxii) x+1/2, y+1, z1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds