Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Information on the size and structure of nanoparticles can be obtained via analysis of the atomic pair distribution function (PDF), which is calculated as the Fourier transform of X-ray/neutron total scattering. The structural parameters are commonly extracted by fitting a model PDF calculated from atomic coordinates to the experimental data. This paper discusses procedures for minimizing systematic errors in PDF calculations for nanoparticles and also considers the effects of noise due to counting statistics in total scattering data used to obtain the PDF. The results presented here demonstrate that smoothing of statistical noise in reciprocal-space data can improve the precision of parameter estimates obtained from PDF analysis, facilitating identification of the correct model (from multiple plausible choices) from real-space PDF fits.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds