Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The evaporation aerosols produced during the vitrification process of municipal solid waste incinerators (MSWI) fly ash represent a potential environmental risk owing to their high content of heavy metals. In this research, high-temperature heating processes were carried out on fly ashes collected from bag houses in a Chinese MSWI plant and the secondary fly ashes (SFA) were separately collected at three high temperatures (1273 K, 1423 K and 1523 K) below the melting range. Elemental analysis showed that high contents of both zinc and chlorine were present in these SFA samples and, according to the standard of the heavy metals industrial grade of ore, SFAs can be re-used as metallurgical raw materials or rich ore. Moreover, as shown by XAS analysis and for different high temperatures, zinc environments in the three SFA samples were characterized by the same local structure of the zinc chloride. As a consequence, a zinc recycling procedure can be easily designed based on the configuration information.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds