Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
This paper shows how small-angle scattering (SAS) curves can be decomposed in a simple sum using a set of invariant parameters called Kn which are related to the shape of the object of study. These Kn, together with a radius R, give a complete theoretical description of the SAS curve. Adding an overall constant, these parameters are easily fitted against experimental data giving a concise comprehensive description of the data. The pair distance distribution function is also entirely described by this invariant set and the Dmax parameter can be measured. In addition to the understanding they bring, these invariants can be used to reliably estimate structural moments beyond the radius of gyration, thereby rigorously expanding the actual set of model-free quantities one can extract from experimental SAS data, and possibly paving the way to designing new shape reconstruction strategies.

Subscribe to Acta Crystallographica Section A: Foundations and Advances

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds