Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
An evacuated, temperature-controlled cell has been built for use on the small-angle X-ray scattering instrument D24 at the synchrotron radiation facility LURE. The sample is placed in a quartz capillary sealed in a stainless-steel holder using a vacuum-tight glue. Several O rings provide a vacuum path upstream and downstream from the cell, so that the X-ray beam only meets the capillary walls and the solution under study between the slits and the beam stop, while the sample is maintained under atmospheric pressure. The cell temperature is controlled via a water circulation through a copper sheath in tight contact with the steel holder. The use of this cell results in a marked reduction of the background, as observed in two series of parallel experiments using a conventional cell and this evacuated cell. The decrease ranges from a factor of 2 at s 1 values larger than 0.008 Å−1 to more than 15 at s = 0.00116 Å−1, where s is the modulus of the scattering vector (s = 2sin θ/λ, 2θ is the scattering angle and λ is the wavelength of the X-rays).

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds