Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
On the basis of rigorous dynamical-theory calculations, a complete X-ray polarization-switch effect of silicon crystals at the exact multiple-beam diffraction condition is demonstrated. The underlying physical mechanism of this unique phenomenon can be revealed using a simple multiple-wave propagation and interference model. The constructive and destructive interference of the multiple detoured-diffraction beams along the direction of the primary diffracted beam directly leads to the complete polarization switch. This phenomenon can be realized using both synchrotron and laboratory X-ray sources at many discrete wavelengths, and used to design a novel crystal-based polarizer to achieve a 90° polarization rotation.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576721002582/vh5136sup1.pdf
Supporting information


Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds