Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The results are reported of an X-ray diffraction study of an Si crystal designed and fabricated for very asymmetric diffraction from the 333 reflection for X-ray energies of 8.100 and 8.200 keV. A crystal with an asymmetry angle of 46 ± 0.1° between the surface and the (111) planes was studied. The grazing angles of incidence were near 1.08 and 0.33° for these two energies, respectively. Features arising from surface undulations were not observed at 8.100 keV, but were observed at 8.200 keV. The results at 8.100 keV allow an alternative explanation based on strain near the surface to be ruled out. Topographic images were obtained as a function of rocking angle, and in the case of 8.200 keV the surface morphology is evident. The results are found to be in agreement with dynamical X-ray diffraction calculations made with the Takagi–Taupin equations specialized to a surface having convex or concave features, as reported in the accompanying paper [Macrander (2020). J. Appl. Cryst. 53, 793–799].

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds