Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The interesting phenomenon of continuous multiple-beam diffraction (MBD) occurring within special crystallographic planes of cubic structures is illustrated for any Bragg angles of the primary reflection. On the one hand, this effect must be avoided in crystal-based X-ray optics or general crystal diffraction experiments that are designed to utilize two-beam diffraction mechanisms, since the MBD process can significantly reduce the diffraction efficiency and the monochromatization quality. On the other hand, the continuous MBD mechanism may have unique practical applications, with the advantage that it can be activated at arbitrary X-ray wavelengths by simply adjusting the azimuthal angle of the primary reflection. A simple mathematical procedure for determining the continuous MBD planes of any primary reflections is developed for optimization of X-ray monochromator designs and for general X-ray characterization of (pseudo)cubic structure crystals using MBD.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds