Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A versatile procedure to calculate two-dimensional scattering patterns of oriented systems is presented. The systems are represented by a set of dummy atoms with different scattering length densities, which allows the construction of very complex shapes either for single particles or for sets of particles. By the use of oriented pair distance distribution functions it is possible to perform a fast calculation of the scattering intensity from the oriented system in a given direction in the scattering vector (q) space and generate the two-dimensional scattering pattern on a given q plane. Several examples of the calculations are presented, demonstrating the method and its applicability. The presented results open new possibilities for the analysis of scattering patters obtained from oriented systems.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600576717005179/vg5066sup1.pdf
Additional figures


Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds