Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Facing the technical problem of pulse distortion caused by frequent resetting in the latest high-performance silicon drift detectors, which work under high-counting-rate conditions, a method has been used to remove false peaks in order to obtain a precise X-ray spectrum, the essence of which eliminates distorted pulses. Aiming at solving the problem of counting-loss generated by eliminating distorted pulses, this paper proposes an improved method of pulse repairing. A 238Pu source with activity of 10 mCi was used as the measurement object, and the energy spectrum obtained by the pulse repairing method was compared with that obtained by the pulse elimination method. The ten-measurement results show that the pulse repairing method can correct the counting-loss caused by the pulse elimination method and increase peak area, which is of great significance for obtaining a precise X-ray energy spectrum.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds