Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A new com­pound, Ba3Ga2O5Cl2, isostructural with Ba3Fe2O5Cl2, was synthesized by solid-state reaction in air. Through single-crystal and powder X-ray diffraction analysis, the crystal structure was determined to be cubic with chiral space group I213 and unit-cell parameter a = 9.928 (1) Å. The Ga3+ ions in Ba3Ga2O5Cl2 are coordinated by O atoms and form GaO4 tetra­hedra. Ten neighboring GaO4 tetra­hedra are further bridged through corner sharing and rotation along the body diagonal, producing the chiral structure. Magnetization measurements indicate tem­per­ature-independent diamagnetic behavior, which is qualitatively consistent with core diamagnetism from all the constituent elements.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520622004723/tq5004sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520622004723/tq5004Isup2.hkl
Contains datablock I

CCDC reference: 2170191

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b).

Tribarium digallium pentaoxide dichloride top
Crystal data top
Ba3Cl2Ga2O5Mo Kα radiation, λ = 0.7107 Å
Mr = 702.36Cell parameters from 637 reflections
Cubic, I213θ = 4.1–34.9°
a = 9.9282 (16) ŵ = 17.85 mm1
V = 978.6 (5) Å3T = 300 K
Z = 4Cubic, white
F(000) = 12160.03 × 0.02 × 0.02 mm
Dx = 4.767 Mg m3
Data collection top
Bruker Photon 200
diffractometer
543 reflections with I > 2σ(I)
φ and ω scansRint = 0.015
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 34.8°, θmin = 2.9°
Tmin = 0.246, Tmax = 0.755h = 148
759 measured reflectionsk = 310
559 independent reflectionsl = 154
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + 19.8694P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.022(Δ/σ)max < 0.001
wR(F2) = 0.072Δρmax = 1.90 e Å3
S = 1.33Δρmin = 1.55 e Å3
559 reflectionsAbsolute structure: Refined as an inversion twin.
21 parametersAbsolute structure parameter: 0.04 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba010.7500000.59158 (7)0.0000000.01177 (17)
Ga020.40458 (9)0.59542 (9)0.09542 (9)0.0065 (3)
Cl030.6913 (2)0.3087 (2)0.8087 (2)0.0188 (8)
O0040.5099 (5)0.4901 (5)0.9901 (5)0.0083 (16)
O0050.5000000.7500000.1423 (10)0.0142 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba010.0095 (3)0.0093 (3)0.0165 (3)0.0000.0014 (2)0.000
Ga020.0065 (3)0.0065 (3)0.0065 (3)0.0000 (3)0.0000 (3)0.0000 (3)
Cl030.0188 (8)0.0188 (8)0.0188 (8)0.0040 (8)0.0040 (8)0.0040 (8)
O0040.0083 (16)0.0083 (16)0.0083 (16)0.000 (2)0.000 (2)0.000 (2)
O0050.018 (4)0.011 (4)0.013 (4)0.008 (4)0.0000.000
Geometric parameters (Å, º) top
Ba01—O004i2.590 (3)Ba01—Cl03ii3.440 (3)
Ba01—O004ii2.590 (3)Ba01—Ga02iv3.5580 (12)
Ba01—O005iii2.642 (10)Ba01—Ga023.5580 (12)
Ba01—O005iv3.260 (4)Ba01—Ga02vii3.5931 (11)
Ba01—O0053.260 (4)Ga02—O004i1.811 (10)
Ba01—Cl03v3.2730 (19)Ga02—O005viii1.863 (2)
Ba01—Cl03vi3.2730 (19)Ga02—O005ix1.863 (2)
Ba01—Cl03i3.440 (3)Ga02—O0051.863 (2)
O004i—Ba01—O004ii134.2 (3)O005ix—Ga02—O005109.89 (16)
O004i—Ba01—O005iii112.89 (16)O004i—Ga02—Ba01x44.24 (2)
O004ii—Ba01—O005iii112.89 (16)O005viii—Ga02—Ba01x65.49 (12)
O004i—Ba01—O005iv150.69 (16)O005ix—Ga02—Ba01x131.41 (7)
O004ii—Ba01—O005iv60.2 (2)O005—Ga02—Ba01x117.1 (3)
O005iii—Ba01—O005iv61.16 (4)O004i—Ga02—Ba0144.24 (2)
O004i—Ba01—O00560.2 (2)O005viii—Ga02—Ba01131.41 (7)
O004ii—Ba01—O005150.69 (16)O005ix—Ga02—Ba01117.1 (3)
O005iii—Ba01—O00561.16 (4)O005—Ga02—Ba0165.49 (13)
O005iv—Ba01—O005122.31 (9)Ba01x—Ga02—Ba0174.35 (3)
O004i—Ba01—Cl03v108.48 (16)O004i—Ga02—Ba01xi44.243 (19)
O004ii—Ba01—Cl03v85.32 (8)O005viii—Ga02—Ba01xi117.0 (3)
O005iii—Ba01—Cl03v72.39 (6)O005ix—Ga02—Ba01xi65.49 (12)
O005iv—Ba01—Cl03v97.14 (15)O005—Ga02—Ba01xi131.41 (7)
O005—Ba01—Cl03v65.41 (15)Ba01x—Ga02—Ba01xi74.35 (3)
O004i—Ba01—Cl03vi85.32 (8)Ba01—Ga02—Ba01xi74.35 (3)
O004ii—Ba01—Cl03vi108.48 (16)O004i—Ga02—Ba01xii126.42 (2)
O005iii—Ba01—Cl03vi72.39 (6)O005viii—Ga02—Ba01xii123.4 (2)
O005iv—Ba01—Cl03vi65.41 (15)O005ix—Ga02—Ba01xii64.56 (12)
O005—Ba01—Cl03vi97.14 (15)O005—Ga02—Ba01xii45.4 (3)
Cl03v—Ba01—Cl03vi144.78 (11)Ba01x—Ga02—Ba01xii160.825 (18)
O004i—Ba01—Cl03i60.4 (2)Ba01—Ga02—Ba01xii88.896 (10)
O004ii—Ba01—Cl03i81.91 (8)Ba01xi—Ga02—Ba01xii110.534 (9)
O005iii—Ba01—Cl03i144.725 (7)O004i—Ga02—Ba01viii126.42 (2)
O005iv—Ba01—Cl03i106.47 (13)O005viii—Ga02—Ba01viii64.56 (13)
O005—Ba01—Cl03i120.27 (8)O005ix—Ga02—Ba01viii45.4 (3)
Cl03v—Ba01—Cl03i142.57 (6)O005—Ga02—Ba01viii123.4 (2)
Cl03vi—Ba01—Cl03i72.53 (5)Ba01x—Ga02—Ba01viii110.534 (9)
O004i—Ba01—Cl03ii81.91 (8)Ba01—Ga02—Ba01viii160.826 (18)
O004ii—Ba01—Cl03ii60.4 (2)Ba01xi—Ga02—Ba01viii88.896 (10)
O005iii—Ba01—Cl03ii144.725 (7)Ba01xii—Ga02—Ba01viii88.35 (3)
O005iv—Ba01—Cl03ii120.27 (8)O004i—Ga02—Ba01xiii126.42 (2)
O005—Ba01—Cl03ii106.47 (13)O005viii—Ga02—Ba01xiii45.4 (3)
Cl03v—Ba01—Cl03ii72.53 (5)O005ix—Ga02—Ba01xiii123.4 (2)
Cl03vi—Ba01—Cl03ii142.57 (6)O005—Ga02—Ba01xiii64.56 (13)
Cl03i—Ba01—Cl03ii70.550 (15)Ba01x—Ga02—Ba01xiii88.896 (9)
O004i—Ba01—Ga02iv151.8 (2)Ba01—Ga02—Ba01xiii110.534 (9)
O004ii—Ba01—Ga02iv29.2 (2)Ba01xi—Ga02—Ba01xiii160.825 (18)
O005iii—Ba01—Ga02iv89.387 (18)Ba01xii—Ga02—Ba01xiii88.35 (3)
O005iv—Ba01—Ga02iv31.32 (4)Ba01viii—Ga02—Ba01xiii88.35 (3)
O005—Ba01—Ga02iv147.56 (4)Ba01xiv—Cl03—Ba01xv99.81 (8)
Cl03v—Ba01—Ga02iv94.27 (3)Ba01xiv—Cl03—Ba01xvi99.81 (8)
Cl03vi—Ba01—Ga02iv85.36 (3)Ba01xv—Cl03—Ba01xvi99.81 (8)
Cl03i—Ba01—Ga02iv91.43 (5)Ba01xiv—Cl03—Ba01xvii156.06 (7)
Cl03ii—Ba01—Ga02iv89.57 (5)Ba01xv—Cl03—Ba01xvii79.613 (19)
O004i—Ba01—Ga0229.2 (2)Ba01xvi—Cl03—Ba01xvii103.88 (2)
O004ii—Ba01—Ga02151.8 (2)Ba01xiv—Cl03—Ba01xviii103.88 (2)
O005iii—Ba01—Ga0289.386 (18)Ba01xv—Cl03—Ba01xviii156.06 (7)
O005iv—Ba01—Ga02147.56 (4)Ba01xvi—Cl03—Ba01xviii79.613 (19)
O005—Ba01—Ga0231.32 (4)Ba01xvii—Cl03—Ba01xviii77.35 (7)
Cl03v—Ba01—Ga0285.36 (3)Ba01xiv—Cl03—Ba01xix79.613 (19)
Cl03vi—Ba01—Ga0294.27 (3)Ba01xv—Cl03—Ba01xix103.88 (2)
Cl03i—Ba01—Ga0289.57 (5)Ba01xvi—Cl03—Ba01xix156.06 (7)
Cl03ii—Ba01—Ga0291.43 (5)Ba01xvii—Cl03—Ba01xix77.35 (7)
Ga02iv—Ba01—Ga02178.77 (4)Ba01xviii—Cl03—Ba01xix77.35 (7)
O004i—Ba01—Ga02vii136.02 (9)Ga02xvii—O004—Ba01xvii106.6 (2)
O004ii—Ba01—Ga02vii87.32 (19)Ga02xvii—O004—Ba01xviii106.6 (2)
O005iii—Ba01—Ga02vii30.130 (7)Ba01xvii—O004—Ba01xviii112.22 (18)
O005iv—Ba01—Ga02vii31.06 (4)Ga02xvii—O004—Ba01xix106.6 (2)
O005—Ba01—Ga02vii91.27 (5)Ba01xvii—O004—Ba01xix112.22 (18)
Cl03v—Ba01—Ga02vii84.79 (4)Ba01xviii—O004—Ba01xix112.22 (18)
Cl03vi—Ba01—Ga02vii64.37 (7)Ga02—O005—Ga02xiii151.1 (6)
Cl03i—Ba01—Ga02vii129.26 (3)Ga02—O005—Ba01xii104.5 (3)
Cl03ii—Ba01—Ga02vii141.20 (4)Ga02xiii—O005—Ba01xii104.5 (3)
Ga02iv—Ba01—Ga02vii60.584 (14)Ga02—O005—Ba0183.19 (16)
Ga02—Ba01—Ga02vii118.21 (2)Ga02xiii—O005—Ba0184.38 (16)
O004i—Ga02—O005viii109.05 (16)Ba01xii—O005—Ba01115.68 (15)
O004i—Ga02—O005ix109.05 (16)Ga02—O005—Ba01xiii84.38 (16)
O005viii—Ga02—O005ix109.89 (16)Ga02xiii—O005—Ba01xiii83.19 (16)
O004i—Ga02—O005109.05 (16)Ba01xii—O005—Ba01xiii115.68 (15)
O005viii—Ga02—O005109.89 (16)Ba01—O005—Ba01xiii128.6 (3)
Symmetry codes: (i) x, y, z1; (ii) x+3/2, y, z+1; (iii) y, z+1, x+1/2; (iv) x+3/2, y, z; (v) x+3/2, y+1, z1/2; (vi) x, y+1, z+1/2; (vii) x+1/2, y+3/2, z; (viii) y1/2, z+1/2, x1/2; (ix) z+1/2, x+1, y1/2; (x) y+1, z+1/2, x+1/2; (xi) z+1/2, x1/2, y1/2; (xii) z+1/2, x+3/2, y+1; (xiii) x+1, y+3/2, z; (xiv) y, z, x; (xv) z+1, x+1, y+3/2; (xvi) x+3/2, y+1, z+1/2; (xvii) x, y, z+1; (xviii) y+1, z+1/2, x+3/2; (xix) z+1/2, x1/2, y+1/2.
 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds