Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of the [A(1)2][A(2)3](BO4)3X apatites and the related compounds [A(1)2][A(2)3](BO5)3X and [A(1)2][A(2)3](BO3)3X are collated and reviewed. The structural aristotype for this family is Mn5Si3 (D88 type, P63/mcm symmetry), whose cation array approximates that of all derivatives and from which related structures arise through the systematic insertion of anions into tetrahedral, triangular or linear interstices. The construction of a hierarchy of space-groups leads to three apatite families whose high-symmetry members are P63/m, Cmcm and P63cm. Alternatively, systematic crystallographic changes in apatite solid-solution series may be practically described as deviations from regular anion nets, with particular focus on the O(1)—A(1)—O(2) twist angle φ projected on (001) of the A(1)O6 metaprism. For apatites that contain the same A cation, it is shown that φ decreases linearly as a function of increasing average ionic radius of the formula unit. Large deviations from this simple relationship may indicate departures from P63/m symmetry or cation ordering. The inclusion of A(1)O6 metaprisms in structure drawings is useful for comparing apatites and condensed-apatites such as Sr5(BO3)3Br. The most common symmetry for the 74 chemically distinct [A(1)2][A(2)3](BO4)3X apatites that were surveyed was P63/m (57%), with progressively more complex chemistries adopting P63 (21%), P\bar 3 (9%), P\bar 6 (4.3%), P21/m (4.3%) and P21 (4.3%). In chemically complex apatites, charge balance is usually maintained through charge-coupled cation substitutions, or through appropriate mixing of monovalent and divalent X anions or X-site vacancies. More rarely, charge compensation is achieved through insertion/removal of oxygen to produce BO5 square pyramidal units (as in ReO5) or BO3 triangular coordination (as in AsO3). Polysomatism arises through the ordered filling of [001] BO4 tetrahedral strings to generate the apatite–nasonite family of structures.
Keywords: apatites.

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds