Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
This paper reports the present stage of commissioning of the gas-phase photoemission beamline at Elettra, Trieste. The beamline is designed for atomic and molecular science experiments with high-resolution and high-flux synchrotron radiation. It consists of an undulator source, variable-angle spherical-grating monochromator and two experimental stations. The design value of the energy range is 20 to 800 eV with a specified resolving power of over 10000. The procedure adopted for calibration of this type of monochromator is discussed. At present a resolving power up to 20000 and a range up to 900 eV have been measured. Absorption spectra taken at the argon LII,III-edge and at the nitrogen, oxygen and neon K-edges are as sharp as, or sharper than, any reported in the literature. The instrumental broadening is well below the natural line-width making it difficult to quantify the resolution; this problem is discussed.

Subscribe to Journal of Synchrotron Radiation

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds