Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The dynamics of concentrated, charge-stabilized colloidal silica suspensions was studied over a wide range of wave-vectors. The short-time diffusion coefficient, D(Q), was measured for concentrated suspensions up to their solidification points by photon correlation spectroscopy with coherent X-rays and compared to free particle diffusion D0, studied by Dynamic Light Scattering (DLS) in the dilute case. Small angle X-ray scattering (SAXS) was used to determine the static structure factor S(Q). D0/D(Q) peaks for Q values corresponding to the maximum of the static structure factor showing that the mostly likely density fluctuations decay the slowest. The data allow one to estimate the diffusion coefficient D(Q) in the Q → 0 and Q → ∞ limits. Thus, hydrodynamic functions can be derived free from any modeling of the static or dynamic properties. The effects of hydrodynamic interactions on the diffusion coefficient in charge-stabilized suspensions are presented for volume fractions 0.075 < Φ < 0.28.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds