Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The phase problem for diffraction amplitudes measured from a one-dimensional crystal is examined. In the absence of any a priori information, the solution to this problem is shown to be unique up to a parameterized, low-dimensional set of solutions. Minimal additional a priori information is expected to render the solution unique. The effects of additional information such as positivity, molecular envelope and helical symmetry on uniqueness are characterized. The results are pertinent to structural studies of polymeric and rod-like biomolecular assemblies that form one-dimensional, rather than three-dimensional, crystals. This shows the potential for ab initio phasing of diffraction data from single such assemblies measured using new X-ray free-electron laser sources. Such an approach would circumvent the complicated inversion of cylindrically averaged diffraction that is necessary in traditional X-ray fibre diffraction analysis.

Subscribe to Acta Crystallographica Section A: Foundations and Advances

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds