Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
To calculate high-resolution images it is necessary to convolute the wavefunction generated by scattering from the specimen with the microscope objective-lens wavefront aberration function. This is usually done by a multiplication of the transfer function and the specimen exit-surface wavefunction in reciprocal space followed by a numerical integration over all scattering wave vectors. Examination of the analytic behaviour of the wave-front aberration function in the complex plane shows that, for simple scattering functions, it is possible to perform the integral analytically using the method of stationary phase. Analytic results for the imaging of disordered planes of atoms are compared with fast Fourier transform calculations as a function of defocus. The limitations of stationary-phase integration are also discussed.

Subscribe to Acta Crystallographica Section A: Foundations and Advances

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds